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Topics

• Who cares?
• What is probability?
• Bayesian approach
• Examples
• Frequentist approach
• Summary

.   Will discuss mainly in context of PARAMETER 
ESTIMATION. Also important for GOODNESS of 
FIT and HYPOTHESIS TESTING
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It is possible to spend a lifetime 

analysing data without realising that 

there are two very different 

fundamental approaches to statistics:

Bayesianism and Frequentism.
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How can textbooks not even mention             

Bayes / Frequentism?

For simplest case Gaussianm  )( 
with no constraint on µtrue , then

 kmtruemkm  )(

at some probability, for both Bayes and Frequentist

(but different interpretations)

See Bob Cousins “Why isn’t every physicist a Bayesian?” Amer Jrnl Phys 63(1995)398

µtrue
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We need to make a statement about

Parameters, Given Data

The basic difference between the two:

Bayesian :      Prob(parameter, given data)

(an anathema to a Frequentist!)

Frequentist :   Prob(data, given parameter)

(a likelihood function)
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WHAT IS PROBABILITY?
MATHEMATICAL

Formal

Based on Axioms

FREQUENTIST

Ratio of frequencies as  n infinity

Repeated “identical” trials

Not applicable to single event or physical constant

BAYESIAN Degree of belief

Can be applied to single event or physical constant

(even though these have unique truth)

Varies from person to person      ***

Quantified by “fair bet”

LEGAL PROBABILITY
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Bayesian versus Classical

Bayesian   

P(A and B) = P(A;B) x P(B) = P(B;A) x P(A)

e.g.  A = event contains t quark

B = event contains W boson

or     A = I am in Spanish Pyrenees

B = I am giving a lecture

P(A;B) = P(B;A) x P(A) /P(B)

Completely uncontroversial, provided….
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APABP
BAP Bayesian

  
posterior likelihood prior

Problems:   p(param) Has particular value

“Degree of belief”

Credible Intervals

Prior  What functional form?

Coverage

Bayes’ 

Theorem

p(param | data)  α p(data | param) * p(param)
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Prior:  What  functional  form?

Uninformative prior:    Flat?

Cannot be normalised

Ranges 0-1 and 1089-1090 equally probable    

In which variable?   e.g. m,  m2,  ln m,….?

dp/dm = dp/d(ln m) x d(ln m)/dm = (1/m) x dp/d(ln m)

Even more problematic with more params

Unimportant if “data overshadows prior”

Important for limits

Subjective or Objective prior?

Priors might be OK for parametrising prior knowledge, 

but not so good for prior ignorance.
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Data overshadows prior

Mass of Z boson (from LEP)
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Prior

Even more important for UPPER LIMITS
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Prior = zero in unphysical region

Mass-squared of neutrino

Fred James: “Is it a reindeer?”



Bayes: Specific example
Particle decays exponentially:     dn/dt = (1/τ) exp(-t/τ)

Observe 1 decay at time t1:           L(τ)  = (1/τ) exp(-t1/τ)

Choose prior π(τ) for τ

e.g. constant up to some large τ L

Then posterior p(τ) =L(τ) * π(τ)

has almost same shape as L(τ)

Use p(τ) to choose interval for τ
τ in usual way

Sensitivity study: Compare with using different prior

e.g. Prior constant in decay rate λ= 1/τ different range

Contrast frequentist method for same situation later.
16



ppost Upper limit                                 Lower limit

β

Central interval                         Shortest 

Bayesian posterior  intervals

17UL includes 0; LL excludes 0; Central usually excludes 0; Shortest is metric dependent 
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P (Data;Theory)         P (Theory;Data)

HIGGS SEARCH at CERN



Is data consistent with Standard Model?

or with Standard Model + Higgs?    

End of Sept 2000:  Data not very consistent with S.M. 

Prob (Data ; S.M.) < 1%  valid frequentist statement

Turned by the press into:   Prob (S.M. ; Data) < 1%    

and therefore                  Prob (Higgs ; Data) > 99%

i.e. “It is almost certain that the Higgs has been seen”
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P (Data;Theory)         P (Theory;Data)

Theory  =  Murderer or not

Data     =   Eats bread for breakfast or not

P (eats bread ; murderer) ~ 99%

but

P(murderer; eats bread) ~ 10-6
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P (Data;Theory)         P (Theory;Data)

Theory  =   male or female

Data      =   pregnant or not pregnant

P (pregnant ; female) ~ 3%
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P (Data;Theory)         P (Theory;Data)

Theory  =   male or female

Data      =   pregnant or not pregnant

P (pregnant ; female) ~ 3%

but

P (female ; pregnant) >>>3%



Peasant and Dog

1) Dog d has 50% 
probability of being 
100 m. of Peasant p

2) Peasant p has 50% 
probability of being 
within 100m of Dog d ?

25

d p

x

River x =0 River x =1 km
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Given that:       a) Dog d has 50% probability of 

being 100 m. of Peasant, 

is it true that: b) Peasant p has 50% probability of 

being within 100m of Dog d ?

Additional information

• Rivers at zero & 1 km.  Peasant cannot cross them.  

• Dog can swim across river  - Statement a) still true

If dog at –101 m, Peasant cannot be within 100m of 

dog

Statement b) untrue

km 1 h   0 
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Classical Approach

Neyman “confidence interval” avoids pdf  for

Uses only P( x;    )

Confidence interval :21  

P(              contains t ) =  21     True for any    t

Varying intervals 

from ensemble of 

experiments

fixed

Gives range of     for which observed value     was “likely” (    ) 
Contrast Bayes : Degree of belief =                  is in t that  21  



0x



29μ≥0 No prior for μ

Classical (Neyman) Confidence Intervals

Uses only P(data|theory)

Theoretical

Parameter

µ

Observation x 
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90% Classical interval for Gaussian

σ = 1     μ ≥ 0      

e.g. m2(νe),     length of small object

Other methods have 

different behaviour at 

negative x

xobs=3  Two-sided range

xobs=1  Upper limit

xobs=-1 No region for µ
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ul    at 90% confidence

and          known, but random

unknown, but fixed 

Probability statement about         and

Frequentist l u

l u

Bayesian
l u






and          known, and fixed

unknown, and random 

Probability/credible statement about 



Frequentism: Specific example

Particle decays exponentially:     dn/dt = (1/τ) exp(-t/τ)

Observe 1 decay at time t1:         L(τ)  = (1/τ) exp(-t1/τ)

Construct 68% central interval       

t = .17τ

dn/dt                        

τ

t

t = 1.8τ

t1 t
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68% conf. int. for τ from

t1 /1.8  t1 /0.17



Coverage

* What it is:

For given statistical method applied to many sets of data to extract  
confidence intervals for param µ, coverage C is fraction of ranges that 
contain true value of param.      Can vary with µ

* Does not apply to your data:

It is a property of the statistical method used

It is NOT a probability statement about whether µtrue lies in your 
confidence range for µ

* Coverage plot for Poisson counting expt

Observe n counts

Estimate µbest from maximum of likelihood                               µ

L(µ) = e-µ µn/n!    and range of µ from   ln{L(µbest)/L(µ)}  0.5

For each µtrue calculate coverage C(µtrue), and compare with nominal 68%
33

68%

C(µ)

μtrue μ

Ideal coverage 

plot



Coverage : L approach 
(Not Neyman construction)
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P(n,μ) = e-μμn/n!    (Joel Heinrich CDF note 6438)

-2 lnλ< 1         λ = P(n,μ)/P(n,μbest)       UNDERCOVERS



Frequentist central intervals, NEVER undercovers

(Conservative at both ends)
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Feldman-Cousins Unified intervals

Neyman construction, so NEVER undercovers
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FELDMAN - COUSINS

Wants to avoid empty classical intervals     

Uses “L-ratio ordering principle” to resolve 
ambiguity about “which 90% region?”    

[Neyman + Pearson say L-ratio is best for 
hypothesis testing]

No ‘Flip-Flop’ problem

39



40Xobs = -2 now gives upper limit

.

Feldman-Cousins 

90% Confidence 

Interval for 

Gaussian
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Black lines      Classical 90% central interval

Red dashed:   Classical 90% upper limit

Flip-flop
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FLIP-FLOP
If xobs < 3, Upper Limit

If xobs > 3, 2-sided interval

Not good to let xobs determine how result will be presented.

F-C: Move smoothly from 1-sided to 2-sided interval
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Features of Feldman-Cousins

Almost no empty intervals

Unified 2-sided and 1-sided intervals                     y

Eliminates flip-flop

No arbitrariness of interval

Less over-coverage than ‘x% at both ends’

‘Readily’ extends to several dimensions                                     x

‘x% at each end’  or  ‘Max prob density’ problematic 

Neyman construction time-consuming (esp in n-dimensions)

Minor pathologies: Occasional disjoint intervals

Wrong behaviour wrt background

Tight limits when b>nobs                  e.g.      nobs bgd      90% UL

0           3.0        1.08

0           0.0        2.44

Exclusion of s=0 at lower x
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Taking Systematics into account



Reminder of PROFILE L
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Contours of lnL(s,υ)

s = physics param

υ = nuisance param

υ

s

Stat  uncertainty on s from 
width of L fixed at υbest

Total uncertainty on s from width 

of L(s,υprof(s)) = Lprof

υprof(s) is best value of υ at that s

υprof(s) as fn of s lies on green line

Total uncert ≥ stat uncertainty

Contrast with MARGINALISE

Integrate over ν
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s

-2lnL

∆

L(s,ν) for 

different fixed ν



Basis of 

method

Bayes Theorem 

Posterior probability 

distribution 

Uses pdf for data,

for fixed parameters

Meaning of 

probability

Degree of belief Frequentist definition

Prob of 

parameters?

Yes Anathema

Needs prior? Yes No

Choice of 

interval?

Yes Yes (except F+C)

Data 

considered

Only data you have ….+ other possible 

data

Likelihood    

principle?

Yes No
53

Bayesian versus Frequentism

Bayesian Frequentist



Bayesian versus Frequentism

Ensemble of 

experiment

No Yes (but often not 

explicit)

Final 

statement

Posterior probability 

distribution

Parameter values 

Data is likely

Unphysical/

empty ranges

Excluded by prior Can occur

Systematics Integrate over prior Extend dimensionality 

of frequentist 

construction

Coverage Unimportant Built-in

Decision 

making

Yes (uses cost function) Not useful
54

Bayesian                              Frequentist
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Bayesianism versus Frequentism

“Bayesians address the question everyone is 

interested in, by using assumptions no-one 

believes”

“Frequentists use impeccable logic to deal 

with an issue of no interest to anyone”
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Recommended to use both Frequentist and Bayesian 

approaches for parameter determination

If agree, that’s good

If disagree, see whether it is just because of different 

approaches

Approach used at LHC
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Goodness of Fit: 
Kolmogorov-Smirnov

Compares data and model cumulative plots

(or 2 sets of data)

Uses largest discrepancy between dists.

Model can be analytic or MC sample

Uses individual data points

Not so sensitive to deviations in tails   

(so variants of K-S exist)

Not readily extendible to more dimensions

Distribution-free conversion to p; depends on n 

(but not when free parameters involved – needs MC)


