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Outline of the talk 

1. Why do we need accelerators? 

2. Principles. 

3. Electromagnetic fields, their properties and how can you use them? 

4. Equation of motion. 

5. Linear optics. 

6. Examples. 

7. Beam cooling. 
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  Why do we need accelerators? 

 

Accelerators are used: 

 

•  to produce  beams of charge particles. 

 

•  in order to probe matter at fundamental level (l = h/p). 

 

•  for production of neutrons and synchrotron radiation  

   needed in life science and technology. 

 

•  in particle beam therapy for cancer treatment. 

 

•  for production of radioactive isotopes for medical applications, etc. 
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Physical principles of accelerators  are very simple : 

 

 

 

q – electric charge of particle, 

 

F – force 

 

E – electric field  

 

B – magnetic field 

 

v – speed < c 
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Effect of electric field 

Effect of magnetic field 
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• Magnetic field B is used to bend  

  particle orbits in dipole magnets. 

• Focusing is performed in quadrupole  

  magnets (magnetic lenses for charged 

  particles) 

 

Beam steering and focusing 
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• Particle acceleration can be done only by using 

  the electric field E! 

• Constant voltage can be applied only at low  

  energy (breakdown). 

• At high energy Radio Frequency (RF)  

  cavities are used. 

Acceleration 

RF cavity 

Electric field in the RF cavity 
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Accelerator LEGO Blocks 
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Electromagnetic fields 

• On the fundamental level the electromagnetic fields and their properties originate 

from existence of photon and electric charge. 

• On classical level they are described by Maxwell equations (in vacuum): 
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Electrostatic Acceleration 

Electric field can be generated by  

storing as large charge as possible 

(limited by breakdown). 
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Magnetic field changing in time will generate electric field,  

which may be used for acceleration (induction acceleration). 

May accept large current, but limited in energy gain. 

Induction acceleration 
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RF acceleration 

•Wave nature of electromagnetic fields allows 

for Radio Frequency (RF) acceleration, where 

the sinusoidal variation of electric field can be  

produced inside a metallic cavity.  

• By adjusting the cavity geometry the oscillations  

of the wave can be synchronised with a particle beam 

(smaller with the speed of light). 

•In the cavities used for acceleration inside ring accelerators 

the frequency can be varied (with the cost of obtaining 

smaller gradient). 

• The most common method of acceleration. 
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Magnets 

Solenoid Dipole 

Quadrupole 

Combined  

function 
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Hamiltonian in the magnetic field 

The full Hamiltonian describing the dynamics of charge particle in the B field:  

 

 

 

 

(the Courant-Snyder Hamiltonian), where the vector potential: 

 

 

 

corresponds to the magnetic field, which can be expressed as a combination  

of multipoles: 

quidence 

(dipole) 

Focusing 

(quadrupole) 

Chromaticity correction (sextupole, nonlinear term) 

There are also nonlinear terms 

coming from the fields at the magnet  

ends- the so called fringe fields. 
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Simplified derivation of equations of motion 

Particle position: 

Coordinate system 

Newton equation: 

Assuming no solenoidal field: 
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Simplified derivation of equations of motion (2) 

Assuming: 

Changing an independent variable from time into longitudinal position: 

Now using: 

2998.0
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Magnetic rigidity: 
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Review of optics in the circular machine (1) 
 

The equations for horizontal and vertical motion: 

 

 

 

In circular machine: 

                                   

                                                                     

 

where L is length of machine period or circumference 

 

The solution of equation of motion can be expressed in matrix formalism: 
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 The Courant-Snyder invariant (emittance) is given by:  
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Review of optics in the circular machine (2)  

M1 

M2 

M3 

Matrix multiplication rule: Mturn= M1 M2 M3. 
 

It can be shown: 

 

 

 

 

 

Det(Mturn)=1,  
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Solution of equation of motion cab be expressed as: 

Machine tune, number of betatron oscillations per turn. 
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Interpretation of Twiss parameters 
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Optics for off-momentum particles  

Motion for off-momentum particle: 

 

 

 

 

 

 

In circular machines periodic dispersion function is given by: 
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FODO cell 

Qkl
f

1
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FODO lattice is one of the most common and useful focusing structure: 

We can put bending 

dipoles here. 

Quadrupoles 

Thin lens approximation. 

Betatron functions and  

dispersion in the FODO cell 

in the thin lens approximation 
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FODO cell (thick lens approximation) 

Betatron functions and  

dispersion in the FODO cell 

in the thick lens approximation 

2x2 matrix representation for thick 

quadrupoles of lengh l. 
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Qx 

Qy 

Working point 

Resonances 

The resonance conditions have to be avoided: 

 

 

where m, n, l are integers and |m|+|n| gives order of resonance. 

Resonances of first and second order are driven by linear fields 

and higher orders are driven by nonlinear ones.  

They can be a source of an unacceptable beam loss! 

 

lnQmQ yx =
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Wedge and fringe field focusing 

Piece of magnet with wedge shape provides focusing 

effect: originating from geometry in horizontal plane 

and from fringe fields in the vertical one. 

It can be represented by  

the following matrix: 
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Nonlinear transverse optics  

Qy 

Qx 

Nonlinear fields limits stable amplitudes. 

The dynamical apperture is defined by the 

highest amplitude which can be  

transported taking into account only beam 

dynamics limitations. 

 

The amplitude size dictated by the vacuum  

chamber geometry is called physical  

aperture. 

The effects of nonlinearities are especially 

strong close to resonance lines 

Circles represent values  

of DA 
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Momentum compaction and slippage factors 
• Synchronization condition for RF acceleration:   RF=h Rev 

 

 

 

•Transition: 
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When  of particle is higher, than T higher energy  

particles are „slower” in circular machines. 

At = T  all particles move with the same revolution 

frequency – transition point. 

 

Momentum compaction factor 

Slippage  factor 
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ISIS synchrotron at RAL 

70 MeV H– linac 

800 MeV 

proton 

synchrotron TS-1 
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ISIS synchrotron 

Injection 

MICE pion line 
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Example synchrotron - LEIR 

The Low Energy Ion Ring 

(Ion accumulator for LHC): 

• Multiturn injection 

• Fast electron cooling 

• Ultra High Vacuum 

• Bunching 

• Aceleration and transfer 
into the CERN PS 

 



Example synchrotron – LEIR (2) 

LEIR synchrotron cycle 

Transverse optical function in the  

machine period 



General layout of the electron cooler  

Example synchrotron – LEIR (3) 

IMP Lanzhou electron cooler 

Beam cooling methodes in accelerator 

physics: 

• electron cooling 

• radiation cooling 

• stochastic cooling 

• laser cooling 

• ionization cooling 

 



What is cooling? 
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x 

dx/dz 

v

v 

x 

dx/dz 

v

v 

Hot beam Cold beam 

Quantity, which is a measure of beam phase space volume is called emittance 

[mm.mrad]. Cold beam has small emittance. 
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Basics of ionization cooling 

• Muons  pass trough absorber (liquid hydrogen) and  

  acelerating cavity (RF). 

• As a net effect transverse momentum is reduced. 

• Strong focusing (using solenoids), low 

  Z material as absorber and high RF gradient are necessary. 



MICE:  

Muon Ionization Cooling Experiment 

• MICE Goals: 
– Design, build, commission, and operate a realistic section of 

cooling channel 

– Measure its performance in a variety of modes of operation 
and beam conditions 

 

     …results will be used to optimize Neutrino 
Factory,  Muon Collider and future high brightness muon 
beam designs. 



• Thank you and let’s turn into the main part 

of the school: 

                        FFAGs! 
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