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Outline of the talk

Why do we need accelerators?

Principles.

Electromagnetic fields, their properties and how can you use them?
Equation of motion.

Linear optics.

Examples.

Beam cooling.
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S Why do we need accelerators?

Accelerators are used:

» to produce beams of charge particles.

in order to probe matter at (A = h/p).

for production of neutrons and synchrotron radiation
needed in life science and technology.

* in for cancer treatment.

for production of radioactive isotopes for medical applications, etc.

J. Pasternak
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Physical principles of accelerators are ©:
F=q(E+vxDB) E
g — electric charge of particle, o— ;
F — force "

Effect of electric field
E — electric field

B — magnetic field

v —speed <c

Effect of magnetic field

J. Pasternak
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Imperial College :
LDEdDI‘I v ‘Beam steering and focusing = 1515

7 Magnetic field B is used to bend
particle orbits in dipole magnets.
* Focusing is performed in quadrupole
magnets (magnetic lenses for charged
particles)

hyperbolic pole contour

J. Pasternak
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» Particle acceleration can be done only by using
the electric field E!

» Constant voltage can be applied only at low
energy (breakdown).

« At high energy Radio Frequency (RF)
cavities are used.
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Electric field in the RF cavity
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Electromagnetic fields

» On the fundamental level the electromagnetic fields and their properties originate
from existence of photon and electric charge.
* On classical level they are described by Maxwell equations (in vacuum):

J. Pasternak
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Electrostatic Acceleration

Yan de Graaff Accelerator
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Induction acceleration

Magnetic field changing in time will generate electric field,
which may be used for acceleration (induction acceleration).
May accept large current, but limited in energy gain.

?”m""‘x.._‘ _'\_l {_

induced
emf E

beam

ferromagn etic
material
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RF acceleration

*\Wave nature of electromagnetic fields allows

for Radio Frequency (RF) acceleration, where

the sinusoidal variation of electric field can be
produced inside a metallic cavity.

* By adjusting the cavity geometry the oscillations

of the wave can be synchronised with a particle beam
(smaller with the speed of light).

*In the cavities used for acceleration inside ring accelerators
the frequency can be varied (with the cost of obtaining
smaller gradient).

* The most common method of acceleration.

E =FE (t)=E,cos(ar+¢)

L
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The full Hamiltonian describing the dynamics of charge particle in the B field:

—

ed X X Y . ed
Heg === (1+—>—<1+—)\/1—<a— 2y (P, ——2)’
cp P P cp cp
(the Courant-Snyder Hamiltonian), where the vector potential:

C =L Lo ) e L =307+ 0(4)
cp 2 o 2 6

corresponds to the magnetic field, which can be expressed as a combination
of multipoles:

e
—B_=ky+mxy+0(3
o =Ry +may+ 00)

cp
quidence F(busing Chromaticity correction (sextupole, nonlinear term)
(dipole) (quadrupole)

~N

There are also nonlinear terms
ﬁBy _ l + o+ lm(xz _yz) +0(@3) coming from the field§ at the magnet
cp yo, 2 ends- the so called fringe fields.

J. Pasternak
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Simplified derivation of equations of motion

m Coordinate system
z -
Ug
9=0 Ue
Particle position:
R =R, + ru, + zu, R, = const. du, = dOue, dug = —dOu,, du, = 0

Newton equation:
mR = —ev x B = ¢ [(rOB, ~ Bo) u, + (B, - #B,) ue + (7Be ~ 0B, ) u,]

Assuming no solenoidal field:

m (*F - r@z) = —er@®B,(r,2,0)
mi = er®B,(r,z,0)

J. Fasiernak



I m Er ia I cnl IE E gg Science & Technology Facilities Council

London S

Simplified derivation of equations of motion (2)

Assuming:  r = p+ z with p = const

m (I — r{-f-}z) = —er@ (B, — gz)

mé:' = —E‘.l"el'gz

Changing an independent variable from time into longitudinal position:

2 = dzI
’ ds?

Now using: .
1 ~ 1 - =
mv=p=p0(1+%f-) F"'"ﬁ(l p)

1 B e
Po = eB,, ;= ;—:-, k= E’- Magnetic rigidity:

Bp{Tm] = plGeV /c]
J. Pasternak 0.2998
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London b of optics in the circular machine (1)

The equations for horizontal and vertical motion:

X +(k+i)x_Ap1 2"—kz=0
P’ Po P
In circular machine:

k(s)=k(s+1L)

p(s)=p(s+L)
where L is length of machine period or circumference

The solution of equation of motion can be expressed in matrix formalism:

x(s) | |a b x(0) v x(0)
X(s)| e d|x0)] T |x(0)
The Courant-Snyder invariant (emittance) is given by:

%(xz +(ax+ fx)) = ;" + 2ox" + B = ¢

J. Pasternak

cil
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HHHET Review of optics in the circular machine (2)

Matrix multiplication rule: M, .= M; M, M.

turn
It can be shown: M, M,

| cos(Ap) + asm(Ap) Lsin(Au)
- — vsin(Ag) cos(Ap) —asin(Au)

Det(Mturn)=1 , COS(,U) = %TF(M ) = %(CI T d)

turn
pr—a’ =1
Solution of equation of motion cab be expressed as:

x(s) =~&+/ B(s) cos(u1— 11y)

IAY7 Js-ds | -
20 279 B Machine tune, number of betatron oscillations per turn.

0

0

J. Pasternak
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Interpretation of Twiss parameters

. €/ tan 2¢ = 2

e/ K _&m
oA
(// v

Ve
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Motion for off-momentum particle:

AV TELEN
p’ Po P
xD:DA—p
Po
In circular machines periodic dispersion function is given by:
JBE) BW
r)— — dt
= Sint ﬂg)i cos(| u(t) — u(s) — Q)
Matrix formalism can be extended to describe dispersion:
D(s)| |a b e D(0)
D'(s)|=|c d [ || DO
A | oo 1| 4Ar
P P

J. Pasternak

echnology Facilities Cou
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FODO lattice is one of the most common and useful focusing structure:

focusing defocusing focusing

|

draft 1t
— L

Quadrupoles

2f

1 0 1
M@:(—% 1) T =

0
Thin lens approximation. \ | /\ | | /

f4)- L A
2 2 f B [m] D [m]

/ N
Betatron functions and 1L \\ // N
dispersion in the FODO cell
in the thin lens approximation 05 ] 1

We can put bending
dipoles here.

J. Pasternak
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( cos(ly/| K|) \/1?33'”(3\/}{)) 2x2 matrix representation for thick
ﬂ/fp =

\/L_{lsg'n_(h/ua) cos(l4/|K|) quadrupoles of Ie\n‘gh .

i 1 ;
Vo — cosh(ly/ 1K) \/?lsmh’u KD In 3x3 matrix representation:
P _sinh(l\/|K|)  cosh(l\/|K]|) M. 0
VK v [ r j

0 1

cosp  psme p(l—cose)
1 . : Half F SD D SD HalfF
M, =| ——singp cose sin @ — — —

yo, |
0 0 I 4\

3x3 matrix representation for sector 3
dipole (pp=l). B fm] |

2 N\
Betatron functions and } T

dispersion in the FODQ cell ; s ; 1 s B 53
in the thick lens approximation s [m]

J. Pasternak
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The resonance conditions have to be avoided:

mQ +nQ, =/

where m, n, | are integers and |m|+|n| gives order of resonance.
Resonances of first and second order are driven by linear fields
and higher orders are driven by nonlinear ones.

They can be a source of an unacceptable beam loss!

1.8 |

1.6 | *
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Wedge and fringe field focusing

Piece of magnet with wedge shape provides focusing
effect: originating from geometry in horizontal plane
and from fringe fields in the vertical one.

1 0 0
It can be represented by ltand 1 0O
the following matrix: P

0 0 1

J. Pasternak
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Nonlinear fields limits stable amplitudes.
The dynamical apperture is defined by the
highest amplitude which can be
transported taking into account only beam
dynamics limitations.

The amplitude size dictated by the vacuum
chamber geometry is called physical
aperture.
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% ISIS

Nonlinear transverse optics
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The effects of nonlinearities are especially
strong close to resonance lines
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» Synchronization condition for RF acceleration: wge=h wge,

Momentum compaction factor
AL / P
*Transition: A 1 Dd =
Ap T B T% T L — machine circumference
ol 1Y Vr . )
p T - revolution time
[ - relativistic factor

L

T=—
cp

Slippage factor

When y of particle is higher, than y; higher energy
particles are ,slower” in circular machines.

At y= y; all particles move with the same revolution
frequency — transition point.

J. Pasternak
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70 MeV H- linac

‘;— : 70 Me¥ M- Linac
ISIS#; \
Rutherford Appleton Laboratory =

L i . b
osmis mrs arget Station

800 MeV
S , proton
SACh LS, ' synchrotron

mememe

@ Fg
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Injection

J. Pasternak
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Extraction

Extraction and RF section ER.SS40

extraction RF

i .I* :,'“”;- E;eple:r ] “%jfles -
Injection\ &  eSF_ A NN TSR )
line The Low Energy lon Ring

Triplet

focusing T11ple‘[

(lon accumulator for LHC):
. <}:| bumpel focusing — L

* Multiturn injection

» Fast electron cooling
Ultra High Vacuum

| « Bunching

« Aceleration and transfer
i into the CERN PS

Kicker
[ ]

Exlra@ion

Injection section ER.SS10

Triplet
focusingr B 2

Electron Cooling section ER.SS20

J. Pasternak
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- 5

A Gun Solengid

B. Expaonsion 0. Drift space F. Collector
Solenoid Solenoid Solenoid

r;.o—h
T Collector
S— . T—

C. First toroid

E. Second foroid

ﬁ % IMP Lanzhou electron cooler

General layout of the electron cooler

Beam cooling methodes in accelerator
physics:

» electron cooling

* radiation cooling

» stochastic cooling

* laser cooling

* jonization cooling
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What is cooling?

dx/dz dx/dz
o o © ° o
o 0 %% 0 %"
Py ® © ove
® o

Quantity, which is a measure of beam phase space volume is called emittance
[mm.mrad]. Cold beam has small emittance.

J. Pasternak
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Basics of ionization cooling

multiple scattering
pl Fi

* Muons pass trough absorber (liquid hydrogen) and
acelerating cavity (RF).

* As a net effect transverse momentum is reduced.

 Strong focusing (using solenoids), low
Z material as absorber and high RF gradient are necessary.

J. Pasternak
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Muon lonization Cooling Experiment
ﬂ:ﬁ';?ms Absortijrw;dffﬁi:em-cml e
spectlt-:opnit:rmrrndule ¢ spxmhegn?dule
“‘“f-;.i';".ﬂa
« MICE Goals:

— Design, build, commission, and operate a realistic section of
cooling channel

— Measure its performance in a variety of modes of operation
and beam conditions

...results will be used to optimize Neutrino
Factory, Muon Collider and future high brightness muon
beam designs.
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* Thank you and let’'s turn into the main part
of the school:

FFAGS!
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