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Transverse motion



Transverse motion in particle 
accelerators
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Linearized equations of motion:

Periodic case: Hill’s equations

General solution:

Betatron oscillations: pseudo-harmonic oscillation 
of frequency     (tune) and varying amplitude          .�
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Betatron resonances
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Resonance conditions:

Working point
positioned in the tune 
diagram.
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Non-linear components are considered as perturbations of 
the linear equations of motion.
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Chromaticity
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Variation of tune with respect to particle energy.
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FFAG classification

➡ Achromatic machines!
‣large momentum acceptance!

‣large transverse acceptance!

‣no beam loss during 
acceleration!

‣fast acceleration if desirable!

‣high repetition rate (up to 
1kHz or even CW)!

‣possibly big machines

2 categories:
➡ Chromatic machines!
➡Isochronous cyclotrons!

‣efficient acceleration!

‣CW (Continuous Wave) acceleration!

‣big machines!

‣need to treat resonances one by one!

‣limited energy!

➡Linear non-scaling FFAG!
‣very strong focusing!

‣CW (Continuous Wave) acceleration!

‣rapid acceleration necessary6
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Scaling FFAG

➡Analytical solution. !

➡achromatic system for any momentum range.

keep independent of momentum the transverse linearized 
equations of motion.
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There are also numerical ways to keep the tune constant over a 
certain momentum range (“non-linear non-scaling” FFAG).
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Similarity of the reference trajectories.

(x, s, y): curvilinear coordinates.!
New system of coordinates (x, Θ, y)!
               with!
n: field index!
ρ: curvature radius

Linearized equations of motion for a momentum p:

Independent of momentum p:

Invariance of the focusing strength.

Circular scaling FFAG
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Circular scaling FFAG

9

B(r, ⇥) = B0
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Radial sector:Spiral sector: � = const. � = 0

and
invariance of the field index

similarity of the closed orbitsInvariance of the !
betatron oscillations
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Constant geometrical field index:



Straight scaling FFAG
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Similarity of the reference trajectories

(x, s, y): curvilinear coordinates!
n: field index!
ρ: curvature radius

Linearized equations of motion for a momentum p:
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Independent of momentum p:

Invariance of the focusing strength
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Straight scaling FFAG
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Tilted straight case: � = const.

B(X, Y ) = B0e
m(X�X0)F (Y � (X �X0) tan �)

Rectangular case: � = 0
Y
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and
invariance of the field index

similarity of the closed orbitsInvariance of the !
betatron oscillations

Constant normalized field gradient:



Vertical scaling FFAG
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Similarity of the reference trajectories

(x, s, y): curvilinear coordinates!
ρ: curvature radius!

θ: polar coordinate.!
Vertical field index

Linearized equations of motion for a momentum p:
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Independent of momentum p:

Invariance of the focusing strength
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Vertical scaling FFAG
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p

S. Brooks, IPAC10,11

and
invariance of the field index

similarity of the closed orbitsInvariance of the !
betatron oscillations

Constant normalized vertical field gradient:



scaling FFAG
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Important parameters

horizontal circular 
scaling straight  scaling vertical  scaling

Field law

Dispersion

momentum 
compaction 

factor



Matching of different scaling FFAG cells

2) Matching of the reference trajectories

3) Matching of the periodic linear parameters

b) Matching to the first order in �R/R0

by matching of the cell dispersion of!
the different parts.

a) Matching of a special momentum P0.

Often difficult π-phase advance for one of the parts
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Insertions
1) Matching of the curves s = const.
Radial for the circular case, rectangular in the straight case.



Matching of different scaling FFAG cells
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Insertions



Matching of different scaling FFAG cells
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Insertions

IDS-NF, Oct. 17-18, 2011, WahingtonDC

RACE TRACK FFAG RING

2011年10月18日火曜日



Dispersion suppressor principle

D2 =
D1 + D3

2

a) Matching of a special momentum P0.

DD D D D

b) Matching of cell dispersions such as
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Insertions



Dispersion suppressor principle
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Insertions

Can be partial (bottom 
picture) or complete 

(top picture) 
dispersion suppression



Dispersion suppressor principle
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Insertions

Zero-chromatic system as long as !
amplitude detuning can be neglected.

Dini + (�1)n+1Dfin = 2
nX

i=1

(�1)i+1Di

several dispersion suppressors in cascade if 
the difference of dispersion is too large
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Acceleration 



RF acceleration
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Classical solutions:!

Frequency sweeping ➡ OK in 
scaling FFAGs with high field 
ferromagnetic core cavities. !

Constant RF frequency 
acceleration with isochronism 
(invariance with energy of frev)    
➡ impossible in scaling FFAG

fRF = h · frev with h � N
Synchronisation condition:



Fixed frequency acceleration
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Longitudinal equations of motion
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Fixed frequency acceleration
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Longitudinal hamiltonian

H(�, �;⇥) = h
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Valid for any momentum range

Exact map of hamiltonian contours !
in longitudinal phase space!
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Stationary bucket acceleration
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Bunch after 6 turns

Bucket height

Principle: use the synchrotron motion to accelerate 
beam inside a stationary rf bucket.

Useful in the relativistic region.
(T. Planche’s courtesy)
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Serpentine acceleration
Principle: Bring closer the stationary buckets to open a 

path around them.

Useful in the non-relativistic region.
(E. Yamakawa’s courtesy)



Harmonic number jump 
acceleration

Principle: change the harmonic number h by an integer 
number every turn
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fRF = h · frev with h � N

T (Ei+1)� T (Ei) =
�ih

fRF
=

2⇡�iR

�c

Required excursion:

�iR = ��ih
�RF

2⇡

In relativistic region (β~1), insertions with reduced 
excursions are necessary to install cavities.
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3.6-12.6 GeV muon HNJ ring

Harmonic number jump !
lattice

 0

 20

 40

 60

 80

 100

 160  180

y
 
[
m
]

x [m]

Ring main
part

First
dispersion
suppressor

Second
dispersion
suppressor

Reduced dispersion
section

-200

-100

 0

 100

 200

-200 -100  0  100  200

y
 
[
m
]

x [m]

z

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  50  100  150  200  250

 
!
[
m
]

s [m]

 10.5

 11

 11.5

 22.5  23  23.5  24

Q
z

Qx

 10.5

 11

 11.5

 22.5  23  23.5  24

Q
z

Qx

 10.5

 11

 11.5

 22.5  23  23.5  24

Q
z

Qx

 10.5

 11

 11.5

 22.5  23  23.5  24

Q
z

Qx

 10.5

 11

 11.5

 22.5  23  23.5  24

Q
z

Qx

 10.5

 11

 11.5

 22.5  23  23.5  24

Q
z

Qx

Layout
Tune spread over the !
momentum range

Dispersion (1/2 ring)


