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Scaling	FFAGs	
1955 Michigan MURA Summer Study; Ernest Courant, Tihiro Ohkawa, 
Otto Frisch, and Dave Judd by the Radial Sector Model (under construction)
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1.	Geometrical	similarity	of	orbits	 2.	Similarity	of	field	index	
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FFAG basics (4)
cardinal conditions of a FFAG

Geometrical similarity
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FFAG and early developments (4)
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Non-scaling	FFAG	
	
noun	
An	FFAG	that	doesn’t	sa)sfy	the	cardinal	condi)ons	of	a	scaling	
FFAG.	
abbrev:	NS-FFAG,	ns-FFAG,	NSFFAG,	nsFFAG.	
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BREAK	THE	SCALING	RULES	TO	MAKE	THE	MAGNETS	
MORE	COMPACT	AND	SIMPLE.	
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Make	the	magnets	more	compact	
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FFAG for muon acceleration (1)
making the magnet more compact

• If we could break cardinal conditions (scaling law), FFAG

would be much simpler and magnet would be smaller.

• Why we wanted to have cardinal conditions?

              To avoid resonance in accelerator.
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No gentle slope at low momentum.

  -  Orbit excursion is shorter.

Constant gradient.

  -  Linear magnet.
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FFAG development in UK and in the world (7)

•  Use	magnets	that	produce	a	linear	(or	uniform)	magne)c	field	–	
dipoles	and	quadrupoles	

•  This	is	known	as	a	linear	non-scaling	FFAG.	



Accelerator	Physics:	Natural	chroma)city	

•  The	tune	varies	with	momentum	according	to	the	
chroma)city	ξ,	

	

•  The	natural	chroma)city	in	the	linear	la^ce	is	always	
nega)ve	in	both	transverse	planes.	

	
•  The	tune	decreases	with	momentum	in	a	linear	la^ce.	
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Tune	varia)on	
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Tune Variation with Energy
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5
•  Many	tunes	that	may	corresponds	to	resonances	crossed	during	
accelera)on	(e.g.	integer	tunes).	

•  Accelerate	through	them	quickly!		

Credit:	J.S.	Berg	



ACCELERATE	RAPIDLY	IN	THE	SERPENTINE	CHANNEL	
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Longitudinal	dynamics	
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•  With	sufficient	voltage,	a	channel	opens	up	between	stable	buckets	
•  Fix	the	RF	parameters	(voltage,	phase	and	frequency)	and	accelerate	rapidly	in	this	

channel	(out-of-bucket,	gufer	or	serpen)ne	accelera)on).		

Credit:	S.	Machida	
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Serpentine channel

When orbital period is almost constant 
and has parabolic dependence on 
momentum, path outside rf buckets 
emerges in longitudinal phase space.
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VRF	too	low	 Cri)cal	VRF	 Sufficient	VRF		to	open	channel	
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Time	to	design	an	actual	machine,	
then	build	it	and	test	it.	



Linear	non-scaling	FFAG:	Design	Process	

•  Ensure	cell	tunes	are	in	stable	region	0	<	Qx,y	<	0.5	throughout	
accelera)on.	

•  A	 ring	 consis)ng	 of	 many	 iden)cal	 cells	 is	 preferred	 –	 high	
degree	of	symmetry	improves	dynamic	aperture.	

•  Minimise	 magnet	 apertures:	 keep	 betatron	 func)ons	 and	
dispersion	under	control.	

•  Op)onal	 for	 very	 rapid	 accelera)on:	 Ensure	 a	 (roughly)	
parabolic	)me	of	flight	(TOF)	to	allow	serpen)ne	accelera)on.	

•  Design	a	realis)c	injec)on	and	extrac)on	scheme.	
•  Perform	 error	 study	 to	 check	 feasibility	 w.r.t.	 alignment	

tolerances	etc.	
•  ….	
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Electron	Model	for	Many	Applica)ons:	
(EMMA)	

•  A	proof-of-principle	10-20	MeV	electron	FFAG.	
•  A	densely	packed	ring	consis)ng	of	42	DF	doublets.	
•  Quadrupoles	are	shioed	to	get	the	bending	component.	
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29

EMMA (6)
lattice

• Double focusing lattice (QF and QD).

• Bend fields are created by shifting Quad.

QF

QD

Linear slide

• 4 knobs

– QF and QD strength

– QF and QD position (hor.)

• 4 parameters to fit

– Qx and Qy

– ToF shape and offset

FFAG development in UK and in the world (24)



EMMA	cell	
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described in Section 2, EMMA consists of 42 magnetic cells, each
394.481 mm in length (see Fig. 5), to meet the cost and space
requirements, giving a circumference of 16.568 m. Each cell
consists of a quadrupole magnet doublet and a short straight
section of 110 mm length for the RF cavities, kickers, septa,
vacuum pumping or diagnostics devices. The extremely compact
nature of the lattice has been very challenging for the design and
construction of all hardware, but particularly for the injection and
extraction devices.

Of the 42 straight sections, 19 are taken by RF cavities, one by
an injection septum, two by injection kickers, one by an extraction
septum, two by extraction kickers, one by a wall current monitor
and 16 by vacuum pumping ports with an adjacent vertical
corrector magnet. The pumping port area also provides space
within its length for YAG:Ce screens, which are discussed in
Section 5 and shown on the layout in Fig. 25. Eighty-one beam

position monitors have also been included, with, in general, two
per cell but with three missing in the injection, extraction and
wall current monitor straights.

Electronics racks for the kickers, septa and inductive output
tube are located close to the accelerator, inside the shielding,
while the remaining 11 racks required are located outside of the
accelerator hall, enabling easy access during operation. RF power
is distributed equally to the 19 RF cavities by waveguide and
hybrids located around the circumference of EMMA.

The designs of the injection line and the diagnostics beam line
have been optimised for the EMMA experiments within the
geometrical constraints of the building. Very large injection and
extraction angles are necessary to inject in and extract out of
EMMA, as discussed in more detail in Section 4.1.

3. Injection beamline

3.1. ALICE

The specifications for EMMA create challenging requirements for
the accelerator used as the injector. In particular, this must be able
to deliver a beam at any energy between 10 and 20 MeV. The beam
must consist of a single bunch, with a normalised transverse
emittance and bunch length, around 3 p mm mrad and 12.5 ps,
respectively, sufficiently small for it to act as a point probe of the
EMMA acceptance. The bunch charge should be as large as possible
to avoid compromising the resolution of the diagnostic devices in
EMMA, but cannot be too large, 16–32 pC, to reduce space charge
and RF beam loading effects to a negligible level.

These requirements are all met by the ALICE accelerator [18],
formerly known as the Energy Recovery Linac Prototype. The
layout of this is shown in Fig. 4. It consists of two linear
accelerators, each with 1.3 GHz superconducting RF cavity. The
electron beam is produced by a photoelectron gun, operating
nominally at 350 keV. The first linear accelerator accelerates the
beam to a nominal 8.35 MeV, while the second should then
provide a further acceleration to the 35 MeV level.

3.2. Injection line

The beam created in ALICE is transported to EMMA using the
injection line shown in Fig. 6. As well as transporting the beam,Fig. 5. Plan section of the EMMA cell showing the quadrupole doublet and RF cavity.

Fig. 6. Layout of ALICE to EMMA injection line.
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angle�means�that� the�new�reference�system�is�rotated�clockwise�about� the�local�
y-axis�with�respect�to�the�old�system.”�Hence, I�use a�negative�rotation�angle. I�
ignore�the�statement�in�the�MAD-X�documentation�that�the�rotation�angle�“must�
be�a�small angle, i.e. an angle comparable to the�transverse angles of the�orbit”. I�
used�the�same�quadrupole�strengths�as�in�Section�3.� To�complete�the�description�
of�EMMA�for�calculations�of�the�beam�dynamics, I�use�the�EALIGN�commands�
in�MAD-X�to�displace�the�quadrupoles�laterally�by�the�amounts�specified�in�[11].�
These�displacements�are�orders�of�magnitude�larger�than�those�usually�assumed�in�
studies of�the�distortion of�the�closed�orbit. I don’t�know�what it�means�when�the�
MAD-X�documentation�says�“The�effect�of�misalignments�is�treated�in�a�linear�
approximation”.�

Figure�1:� Horizontal�and�vertical��-functions�and�dispersion�D
x at 15�MeV in�

an�EMMA�cell�from�descriptions�with�combined-function�dipoles�to�the�left,�and�
with�displaced�quadrupoles�on�the�right�

5 EMMA Parameters at 15 MeV 

Fig. 1 shows a�comparison of the orbit�functions at 15 MeV from the two EMMA�
models,�with�combined-function�dipoles�as�described�in�Chapter�3,�and�with�dis-
placed�quadrupoles�as�described� in�Chapter�4.� I�chose� the�signs�of�quadrupole�
displacements�and�Y rotation�such�that�the�orbit�functions�in�the�two�descriptions�
are�similar.� The�results�of�the�two�descriptions�are�not�identical.� Further�differ-
ences�will�be�presented�below.� The�jump�in�D

x at�the exit of�the F element�and�
the�lack�of�periodicity�of�D

x are�artefacts�of�the�MAD-X�graphics.�
Fig. 2 shows�the�survey coordinate�Z of�EMMA�as�a�function�of�the�survey�

coordinate�X from�the�two�EMMA�models,�with�combined-function�dipoles�as�
described�in�Chapter�3,�and�with�displaced�quadrupoles�as�described�in�Chapter�
4.� The�EMMA�ring�starts�and�finishes�at�X = Z = 0 in�both�cases.� However,�
X < 0 almost�always�with�combined-function�dipoles,�while�X > 0 almost�al-
ways�with�displaced�quadrupoles.� In�the�former�case�with�a�positive�net�bending�

4��

Goals	–	Ensure	betatron	func)on	and	dispersion	allow	a	compact	magnet.	Ensure	a	
low	momentum	compac)on	factor	and	parabolic	)me	of	flight.		



COD	in	EMMA	
remain fixed in magnitude, on the harmonic content
calculation at a particular momentum increases.
Contrarily, a lower COD allows injection at momenta
closer to the integer tune and so a more accurate determi-
nation of harmonic content.
For clarity, the correction scheme described above may

be encapsulated in the following statements:
(i) Any and call closed orbits at any and all momenta are

equally good reference orbits.
(ii) If ΔB=B does not vary substantially across the

aperture, then the entire harmonic content of errors (i.e.,
the set fk) may be extracted from the CODmeasured at any
momentum—if measurements are ideal (i.e., error-free).
(iii) However, measurements are not ideal; and the

inferred harmonic content may be corrupted.
(iv) The relative impact of measurement errors is least

when the COD is large.
(v) The COD is large when the ring tune is close to a

particular harmonic.
(vi) The complement to (v) is that the COD at a particular

momentum is dominated by the field error harmonic(s)
close to the tune for that momentum.
(vii) The COD at any and all momenta is reduced by

implementing a correction of any and each harmonic
excitation component fk [provided (ii) above is true].
(viii) Therefore, the recipe for orbit correction is to

extract and correct harmonic excitations fk according to the
procedure
(a) Set the momentum such that the ring tune q is close to

harmonic k but COD is still well within the aperture.
(b) Measure COD and extract fk.
(c) Correct fk.
(d) Iterate steps (a)–(c) with q closer to k.
(e) Repeat steps (a)–(d) for each integer k within the

range of q.
The COD is simulated by using the ZGOUBI tracking

code [11]. The model of EMMA in the code is set up to
approximately reproduce the measured tunes. In the exam-
ple shown in Fig. 3, the COD is corrected by following the
above algorithm. To replicate experimental uncertainties,
the simulation includes fixed BPM offsets and statistical
errors. The harmonic content associated with measure-
ments near integer tunes 6–13 is used to correct the COD in
that interval. As is done experimentally in the horizontal
plane, the correction involved moving all 42D quadrupoles
horizontally (each with a finite error). The figure shows that
the COD is reduced over the momentum range of EMMA.
A weighted least-squares approach may also be consid-

ered to correct the COD at multiple momenta. In the
standard single momentum case,m CODmeasurements are
corrected by using n correctors making use of the mxn
response matrix A. In this case, we extend the correction to
cover np momenta by solving for np !m COD measure-
ments, yext, using an extended np !m × n response matrix
Aext. The least-squares correction seeks to minimize the

norm of the extended data set jyext − Aextθj. The amplitude
of the correction can be adjusted by adding a n × n
diagonal matrix to A and padding the measurement vector
yco with n zeros. The diagonal elements can be adjusted to
weight the amplitude of the resulting correction.
By selecting momenta in between different integer tunes,

the correction settings will be dominated by the associated
harmonics. However, in this case, the correction settings
will also contain harmonics beyond the EMMA tune range
caused by the finite accuracy of the closed orbit measure-
ments. These spurious harmonics have a minimal impact on
the COD but may increase the amplitude of the applied
correction unnecessarily.

IV. HARMONIC CORRECTION OF
ACCELERATED ORBIT DISTORTION

The accelerated bunch receives a series of one or more
transverse kicks that add coherently when a bunch passes
through integer tunes excited by the corresponding har-
monic of the error sources. In the case of a bunch with small
amplitude initially (small in comparison with the effect of
the kick), the magnitude of distortion after crossing is
independent of phase. On the other hand, for a bunch with

FIG. 3. Example of correction of multiple harmonics of the
COD in the horizontal plane. From left to right, the eight peaks
are associated with integer resonances 13–6. At each momentum,
the closed orbit is found at simulated BPMs located in between
each quadrupole doublet in the presence of magnet misalign-
ments with standard deviation 0.1 mm. Since the 42 BPMs are
symmetrically located in each cell, the closed orbit is identical in
the case of an ideal lattice. Imperfect measurements are intro-
duced by including BPM offsets (σ ¼ 0.7 mm) and an additional
statistical error (σ ¼ 0.2 mm). The former is fixed for a given
BPM, while the latter varies with every data point taken. These
parameters were chosen to approximate those in the real machine.
The rms of the resulting COD is then calculated at each
momentum. The black circles and red triangles show this quantity
before and after correction, respectively. Harmonics 6–13 are
corrected, by following the method described in the algorithm,
since they are within the tune range of EMMA. The correction is
applied by moving the D quadrupoles horizontally with finite
error (10 μm). The momenta at which the horizontal tune is
integer and half-integer is shown by the vertical dashed and
dotted lines, respectively.

D. J. KELLIHER et al. Phys. Rev. ST Accel. Beams 17, 112806 (2014)

112806-4
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finite amplitude, the distortion may increase or decrease
depending on its phase relative to the harmonic. Thus, the
amplitude of an accelerated bunch will increase or decrease
as it passes through multiple integer tunes.
When acceleration is sufficiently fast, the effect of the

individual coherent kicks might not be apparent in the
measurements. In Fig. 4, a single particle is injected with
zero amplitude at 10.5 MeV=c and accelerated in the
serpentine channel to 20.5 MeV=c. In the figure, it is clear
that, when the error pattern is excited with a single
harmonic, the accelerated distortion increases when the
momentum, and hence the betatron tune, of the particle
crosses the associated integer. When all harmonics of the
error sources are included, the resulting distortion is made
up of a series of such coherent excitations as the particle
passes through each integer tune in turn. However, the
effect of each individual coherent excitation is not apparent
in the distortion pattern.
The harmonic correction settings used to correct the

closed orbit distortion will also, in principle, reduce the
coherent excitations of the accelerated orbit. To illustrate
this, we apply the same error sources and correction
settings used to correct the closed orbit in Fig. 3. As
before, acceleration is from 10.5 to 20.5 MeV=c in the
serpentine channel with 1.1 MV rf per turn. In Fig. 5, it is
evident that the COD correction reduces the distortion over
the momentum range.
It should be noted that correcting some subset of the

harmonics does not always result in a reduction of the
amplitude of the coherent excitation over the corresponding

momentum range. As described above, the effect of an
integer tune crossing may be to reduce the distortion;
correcting the corresponding harmonic will remove this
reduction.

V. MEASUREMENT OF CLOSED ORBIT
AND RESPONSE MATRIX

The turn-by-turn coordinates obtained from the BPMs
measure, for each turn, the center of mass of the bunch.
Owing to the momentum spread of the beam and the lattice
chromaticity, the betatron oscillations decohere, typically in
a few tens of turns. Once the signal has fully decohered, the
signal from the BPM in subsequent turns measures the
closed orbit rather than the betatron oscillation.
In order to obtain a mean closed orbit at each BPM,

a linear fit is made to the turn-by-turn coordinates.
The fit excludes data from the first turn, which tends to
be an outlier because of kicker jitter [8]. For turns after
decoherence, coordinates whose difference from the fitted
line is greater than 3 standard deviations are removed. The
linear fit is then repeated and any outliers again removed.
This procedure proceeds iteratively until no outliers remain.
The nonzero slope of the linear fit, as seen in Fig. 6, may be
the result of energy loss caused by beam loading [12]. The
closed orbit is assumed to be the value of the linear fit at the
first turn.
The response matrix is measured by applying a positive

and negative transverse kick at each corrector in turn. The
difference between the two closed orbit measurements
yields the response. The magnitude of the kick should
be large enough that the resulting closed orbit response is
not dominated by measurement error, yet not so large as to
lead to increased beam loss. It was determined experimen-
tally that a reasonable response was obtained by horizon-
tally moving the quadrupoles by !0.5 mm and applying
!0.2 A to the vertical correctors, resulting in a ∼3 mrad
and ∼1 mrad kick in the horizontal and vertical planes,
respectively.

FIG. 5. Simulated accelerated orbit distortion versus tune
before (black dots) and after (red line) COD correction of
harmonics 6–13. The error sources and correction are as
described for Fig. 3.

FIG. 4. Simulated distortion of the horizontal accelerated orbit
versus tune in the case of where the magnets are misaligned
randomly (black points) and in the case where just the ninth
harmonic of the same random misalignment is retained (red line).
The random misalignments have 50 μm standard deviation. A
single particle is tracked, starting on the closed orbit at the initial
momentum, and its coordinate found throughout acceleration at
simulated BPMs located in between each quadrupole doublet.
The distortion is then calculated by subtracting from the
coordinate the moving window average hxi, with the width of
the window determined by the betatron oscillation wavelength. In
this case, the simulated BPM readings are assumed to be ideal.
Acceleration is from 10.5 to 20.5 MeV=c in the serpentine
channel with 1.1 MV rf per turn.

ORBIT CORRECTION IN A LINEAR NONSCALING … Phys. Rev. ST Accel. Beams 17, 112806 (2014)

112806-5

Correc)ng	the	harmonics	of	the	
magnet	misalignments	reduces	
both	the	COD	and	the	accelerated	
orbit	across	the	momentum	range.	



Measured	COD	

Source of COD 

•  Misalignment turns out worse than expected. 

•  Re‐alignment during shutdown should have made 

COD less than +/‐ 1 mm. But… 

38 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Source	of	horizontal	COD	
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COD by extracLon septum 

•  Difference between on and off tells COD by

 extracLon septum. 

41 

•  Kink at extracLon septum

 (between cell 26 and 27) 

•  COD amplitude is ~8 mm. 

off 

on 



The	culprit	–	Septum	stray	field.			
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AN INJECTION/EXTRACTION SCENARIO FOR EMMA

J. Scott Berg, Brookhaven National Laboratory∗, PO Box 5000, Upton, NY, 11973, USA
Abstract
EMMA is an experiment to study beam dynamics in a

linear non-scaling fixed-field alternating gradient accelera-
tor (FFAG). It accelerates an electron beam from 10 to 20
MeV kinetic energy. To optimally perform these studies,
one must be able to inject the beam at any energy within the
machine’s energy range. Furthermore, because we wish to
study the behavior of large-emittance beams in such a ma-
chine, the injection systems must be able to inject the beam
anywhere within a transverse phase space ellipse with a
normalized acceptance of 3 mm, and the extraction systems
must be able to extract from that same ellipse. I describe
a computation of kicker and septum fields to achieve all of
these requirements, and discuss how this interacts with the
hardware constraints.

INJECTION/EXTRACTION SYSTEMS
In any FFAG, injection and extraction is one of the most

challenging aspects of the machine. Requirements for the
symmetry and compactness of the lattice make the require-
ments on the kicker hardware very challenging. Since the
purpose of the EMMA experiment is to perform detailed
studies of beam dynamics in a linear non-scaling FFAG,
the requirements for the injection and extraction systems
are significantly more extensive. The injection systemmust
be able to inject the beam at any energy within the operat-
ing range of the machine (10 to 20 MeV kinetic energy)
so that the fixed-energy lattice parameters can be measured
as a function of energy. One must also be able to extract
at most energies to study beam properties during the accel-
eration cycle. To examine the behavior of the machine at
large transverse amplitude, a small probe beam will scan
the transverse phase space. The injection system will be
used to accomplish this in the horizontal plane, and the ex-
traction system must reverse this to guide the beam into
the extraction line (whose transverse acceptance is signif-
icantly smaller than that of the EMMA main ring). The
lattice of the main ring will be varied [1], and the injection
and extraction systems must accomplish all of these tasks
for the range of possible lattice configurations.
The injection region for the EMMA ring is shown in

Fig. 1. It consists of a septum and two kickers, all placed in
successive drifts. These choices were made for several rea-
sons. We wanted to avoid intervening RF cavities between
elements of the injection system, with the constraint that
we would try as best as we could to place a cavity in every
other cell [2]. Given the space constraints, the maximum
integrated kicker strength was around 7 mT-m [3], mean-
ing that a two kickers would be needed. The extraction

∗Work Supported by the United States Department of Energy, Contract
No. DE-AC02-98CH10886.

Figure 1: Injection region of EMMA, showing, right to left,
the injection septum and two kickers.

Figure 2: Septum, showing magnetic field magnitudes [5].
Transition to white is at 5 mT.

system is essentially a reflection of the injection system.
A particular challenge is posed by the septum. Stray

fields from the septum are significant (see Fig. 2): inte-
grated fields as low as 20 µT-m can lead to significant orbit
distortions [4]. The septum must thus be placed a signif-
icant distance from the beam, ideally at least 1 cm away.
Due to the wide range in positions of the circulating beam
that we will be trying to inject or extract, the septum was
designed to be moved horizontally to maintain the required
separation while preventing a large distance to the septum
from making injection or extraction unnecessarily difficult.
A doublet lattice is not reflection symmetric. So one

must choose whether the horizontally focusing (F) or hor-
izontally defocusing (D) magnet will immediately follow
the injection septum, realizing that the magnet immediately
before the extraction septum will be the other one. As-
suming horizontal injection, injection is simper when the
D magnet is adjacent to the septum: the D magnet pushes

Proceedings of PAC09, Vancouver, BC, Canada TH6PFP013

Beam Dynamics and Electromagnetic Fields D01 - Beam Optics - Lattices, Correction Schemes, Transport
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Because	of	the	short	drio	space,	a	65	degree	injec)on	septum	is	required.	
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Figure 3: Injection of 10 MeV beam into EMMA, for the
070221f lattice configuration described in [1]. The beam
goes from right to left in the drawing. The last value plotted
on the right is where the beam exits the septum. Different
lines are for different beam positions on the outer edge an
ellipse with a 3 mm emittance. The top of the graph shows
the magnets: D and F for the two displaced quadrupoles,
and K for the kickers. The filled areas are the paths traced
out by 3 mm emittance beams circulating at 10 MeV (be-
low) and 20 MeV (above). Positive horizontal coordinates
are toward the outside of the ring.

Figure 4: Injection of a 20 MeV beam into EMMA. Ev-
erything is as in Fig. 3, except only the 20 MeV circulating
beam is shown.

the beam out of the ring and will generally have a beam
with a small size and smaller excursions (compare Figs. 3
and 6, for example). We chose to put the D magnet im-
mediately after the injection septum since we wanted to
insure that we could inject at every energy. Also, for in-
jection, the septum needs to be outside the highest energy
orbit (since the beam’s energy will increase and therefore
move the beam to the outside), whereas for extraction, the
septum could be moved nearer to the circulating beam at

Figure 5: Injection of beams of various energies into
EMMA. Energies are from 10 to 20 MeV in 1 MeV steps.
Each color is a different energy: violet, toward the top, is
the highest energy, and red, toward the bottom, is the low-
est. For a given color, different lines are different initial
conditions on the edge of an ellipse as in Fig. 3.

Figure 6: Extraction of 10 MeV beam from EMMA. The
beam goes from left to right in the drawing. The last point
plotted on the right is where the beam enters the septum.
Only the 10 MeV circulating beam is shown. Everything
else is as in Fig. 3.

the desired extraction energy, since the beam would never
be outside that point. Injection is thus inherently more dif-
ficult, so it is important to choose the lattice symmetry to
ease injection.
In this paper, I will describe the results of using these

hardware constraints to choose parameters for the injection
and extraction kickers so as to be able to inject and extract
at every energy from 10 to 20 MeV, as well as to be able
to scan a horizontal phase space with a normalized accep-
tance of 3 mm. I will discuss some of the difficulties of the
resulting system and how they can be addressed.

TH6PFP013 Proceedings of PAC09, Vancouver, BC, Canada

Beam Dynamics and Electromagnetic Fields
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In the case that − 1
2ξy

< δmin and δmax < 1
2ξy
, then ΦðδÞ

and ΦpðδÞ will be the same in the range − 1
2ξy

< δ < 1
2ξy
.

At this point we observe that Eq. (5) is, formally,
the inverse Fourier transform of the momentum dis-
tribution ΦPðδÞ. We can consider fn to be the time
domain representation of ΦPðδÞ. It can be seen in Fig. 3
that a Gaussian distribution in ΦPðδÞ leads to a
Gaussian decoherence signal in the time domain, and
that a uniform ΦPðδÞ distribution leads to a sinc-like
signal.
The chromaticity of EMMA (measured to be ∼ − 10

[6]) allows for a #5% momentum spread in the range
δ ¼ − 1

2ξy
to 1

2ξy
. Previously a momentum spread of

100 keV=c (at 15 MeV=c, giving a #0.3% momentum
spread) has been measured in the EMMA injection
line [16]. This means that ΦPðδÞ should correspond to
the actual momentum distribution of the bunch and
should not be subject to the effects that would occur
in the case that some particles have jδj > 1

2jξyj
. In the

case of having an infinite number of samples of the
BPM signal, the discrete time Fourier transform
(DTFT) can give the momentum distribution, ΦPðδÞ.
For the finite number of BPM data samples obtained
experimentally, an estimate of the momentum distribu-
tion can be found by

ΦpðδÞ ≈ eiϕ0

XN

n¼−N
fnei2πnðQyþξyδÞ; (6)

where N is the total number of turns of BPM data to
which the calculation is applied, and assuming that the
terms for the negative turn numbers may be found by
considering the complex conjugate of fn,

f−n ¼ e−i2ϕ0fn&:

Finally, Eq. (6) may be written as

ΦpðδÞ ≈ eiϕ0f0 þ 2ℜ
!
eiϕ0

XN

n¼1

fnei2πnðQyþξyδÞ
"
: (7)

III. MEASUREMENT OF THE INITIAL PHASE
AND LATTICE FUNCTIONS

ALPHA AND BETA

The expression for reconstructing the momentum
distribution given in Eq. (7) requires that the initial betatron
oscillation phase, ϕ0, and the Courant-Snyder parameters,
αy and βy, are known. In this section, we present a method
for measuring these parameters where the amplitude of
coherent betatron oscillations (measured by the BPMs) is
damped because of decoherence.
Firstly, a rotation of −Ψn is applied to the normalized

phase space coordinates of Eq. (3),

gn ¼ eiΨnfn: (8)

IfΨn is the betatron phase advance between injection and
the nth turn for a mono-energetic bunch (Ψn ¼ 2πnQy),
then gn is equal to the normalized phase space coordinates at
turn zero (f0) for all values of n. Accordingly, the argument
of gn will be constant for all n, with value equal to the initial
phase of the betatron oscillation, ϕ0.
In practice, yn and py;n are found through using BPMs

and Ψn may be calculated after first finding the betatron
tune, Qy, by applying the numerical analysis of the
fundamental frequency (NAFF) correlator [17] to the
BPM data. The design values of αy and βy at the BPM
position are taken as initial estimates.
If the experimental values of αy and βy do not match the

design values, then a plot of the argument of gn vs n will
show an oscillation around ϕ0. A fitting procedure, which
has the objective of minimizing the oscillation of argðgnÞ vs
n around ϕ0 and has αy and βy as free parameters, can be
used to find the experimental values of αy and βy.
When the bunch has some momentum distribution, then

the transverse coordinate and momentum, yn and py;n, are
described by

FIG. 3. Plots of bunch centroid vs turn number. The way in which the particle beam decoheres is dependent not only upon the spread
of momentum, but also the form of the momentum distribution.

C. S. EDMONDS et al. Phys. Rev. ST Accel. Beams 17, 054401 (2014)

054401-4

Apparent	decay	in	amplitude	due	to	
decoherence.	Pafern	of	decoherence	
depends	on	the	momentum	distribu)on	
[C.	Edmonds	PRST-AB	17,	054401	(2014)]	

What we learned (5)
integer tune crossing

Integer tune crossing itself is not harmful. It only 
excites coherent motion, not emittance growth.

Natural chromaticity with finite momentum spread 
causes decoherence and emittance growth. 

time
before integer tune right after integer long after integer corssing

This is not the case in cyclotrons.
25

xp

x x x
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Integer	crossing	+	chroma)city	=	emifance	growth	[J.	Garland,	FFAG13]		
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Accelera)on	results	
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Figure 2 | Beam position and cell tune for fixed momentum beams. a, Horizontal and vertical beam position in consecutive cells over 10 turns for an
equivalent momentum beam of 12.0 MeV/c. The closed orbit has small cell-to-cell fluctuations arising from magnet imperfections, around which betatron
oscillations are observed. b, Horizontal and vertical beam position computed as an average position over 10 turns from measurements such as a for a range
of equivalent momenta. Uncertainties shown are the standard error of the mean. c, Horizontal and vertical cell tune for 12.0 MeV/c equivalent momentum,
computed using the NAFF (ref. 32) algorithm with a Hanning filter on horizontal and vertical position data, respectively, over a window of 21 cells centred
at the indicated cell number. The value fluctuates for the same reasons as given in a. d, Horizontal and vertical tune computed as an average of tune data
such as in c. The uncertainty reflects an upper bound estimate using the standard deviation of the data points from the average, assuming no correlation in
the NAFF-estimated tunes. A least-squares fit of a second-order polynomial to the data for the horizontal position, and horizontal and vertical cell tunes
are used to provide three independent mappings from measured data to momentum, which can be used to reconstruct the longitudinal phase space during
acceleration (Figs 3 and 4).

turn seen by the beam; by looking at the synchrotron oscillation
period in a radiofrequency bucket, the amplitude of the vector sum
voltage of the cavities was estimated. The second was to measure
the phase offset of the radiofrequency voltage with respect to the
timing of injected beam; by scanning the radiofrequency phase from
0� to 360�, the offset value that produces the smallest synchrotron
oscillations in a radiofrequency bucket was determined.

Once the radiofrequency voltage is greater than 1MV a
serpentine channel begins to appear in the longitudinal phase space;
a voltage of 1.9MV was chosen to create a wide serpentine channel.
For five different initial values of the phase where serpentine
channel acceleration is expected to occur, the horizontal and vertical
orbit positions were measured as a function of the number of
cells through which the beam has passed. The orbit and cell tune
excursions, measured using consecutive BPM readings, for one
case are shown in Fig. 3.

We now have all the required information to reconstruct a
picture of the longitudinal phase space during acceleration. The
beam momentum was extracted from previous measurements
of horizontal beam position and horizontal and vertical cell
tunes measured at different equivalent momenta. The phase
in longitudinal phase space was derived from an independent
radiofrequency phase measurement based on the BPM signal.
The trajectories in longitudinal phase space were reconstructed by
combining the momentum information with this phase evolution.
In Fig. 4, trajectories are shown based on momenta estimated from
horizontal beamposition and horizontal and vertical tune.

Beam extraction is analogous to injection. The kicker pulse
timing allows specific turns to be extracted following acceleration.
The beam energy is measured directly after extraction using
two fluorescent screens either side of the first extraction line
dipole, which acts as a spectrometer. The integrated dipole field
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Figure 3 | Beam position and cell tune for an accelerated beam.
a, Horizontal and vertical beam position in consecutive cells for the first five
turns for a beam injected with an equivalent momentum of 12.0 MeV/c.
The horizontal position shows a systematic shift due to acceleration on top
of the scattered positions observed in Fig. 2a. b, Horizontal and vertical cell
tune computed with the same method as in Fig. 2c. Both tunes show a
systematic shift due to acceleration. For both results, second-order
polynomial fits are performed to estimate momentum as a function of cell
transited when compared to the fixed momentum data of Fig. 2b and d.
This information is used in Fig. 4.
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Figure 4 | Longitudinal phase space trajectories of beams with five different initial phases. All of these cases clearly demonstrate acceleration within the
serpentine channel. The phase values were measured directly, whereas the momentum values were reconstructed using the polynomial fits described in
Figs 2 and 3. a, Momentum estimated from horizontal beam position. b, Momentum estimated from horizontal betatron tune variation. c, Momentum
estimated from vertical betatron tune variation. The solid and dashed grey curves indicate the best estimates of the separatrix boundary between in-bucket
motion and the serpentine channel, calculated using the lower and upper bounds respectively of the estimated systematic error of ±25 ps in the orbital
period measurement in Fig. 1.
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Figure 5 | Standard deviation of beam orbit oscillations in the horizontal and vertical planes, calculated at each cell using a twenty-one cell window.
Results are shown for the first five turns of acceleration, for the five reconstructed trajectories in the serpentine channel in Fig. 4. a, Trajectory with red data,
b, yellow data, c, green data, d, blue data, and e, magenta data. In all cases there is no significant growth in oscillation amplitude.

of 0.0480 Tm is required to bend a beam extracted at the fifth
turn by 43�, thus demonstrating acceleration from 12.5± 0.1 to
19.2±1.0MeV/c, corresponding to 12.0±0.1 to 18.4±1.0MeV/c
in equivalent momentum. The uncertainty of the extracted beam
momentum is an upper bound given by the angular acceptance of
the extraction line vacuum aperture.

During acceleration the cell tune changes by more than 0.1 in
both horizontal and vertical planes. This implies that the total ring
tune changes bymore than 4.2, so that a beammust cross an integer
tune a minimum of four times. In spite of this traversal of integer
tunes, the BPM signals show no significant growth in beam centroid
oscillation, as shown in Fig. 5.

Stable acceleration in the linear non-scaling FFAG EMMA
has been successfully demonstrated. A detailed analysis further
indicates that the beam is accelerated in a serpentine channel from
12.0MeV/c to more than 18.0MeV/c within six turns, with a small
orbit shift of 10mm. During acceleration the beam traverses several
integer tunes in the horizontal and vertical planes without any
observed growth in beam oscillation amplitude.

This very rapid acceleration has direct implications for the
design of future muon accelerators. Furthermore, these results
encourage further exploration of non-scaling FFAGs for a broad
range of proton and ion accelerator applications. The practical

realization of the non-scaling FFAG opens up new possibilities
in the design and application of future accelerators, with the
potential for widespread impact in many areas of science,
technology and medicine. One example is the ongoing Particle
Accelerator for MEdicaL Applications (PAMELA) project7, which
uses non-scaling FFAGs as a proton and carbon-ion source for
charged-particle therapy.
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Figure 5 | Standard deviation of beam orbit oscillations in the horizontal and vertical planes, calculated at each cell using a twenty-one cell window.
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of 0.0480 Tm is required to bend a beam extracted at the fifth
turn by 43�, thus demonstrating acceleration from 12.5± 0.1 to
19.2±1.0MeV/c, corresponding to 12.0±0.1 to 18.4±1.0MeV/c
in equivalent momentum. The uncertainty of the extracted beam
momentum is an upper bound given by the angular acceptance of
the extraction line vacuum aperture.

During acceleration the cell tune changes by more than 0.1 in
both horizontal and vertical planes. This implies that the total ring
tune changes bymore than 4.2, so that a beammust cross an integer
tune a minimum of four times. In spite of this traversal of integer
tunes, the BPM signals show no significant growth in beam centroid
oscillation, as shown in Fig. 5.

Stable acceleration in the linear non-scaling FFAG EMMA
has been successfully demonstrated. A detailed analysis further
indicates that the beam is accelerated in a serpentine channel from
12.0MeV/c to more than 18.0MeV/c within six turns, with a small
orbit shift of 10mm. During acceleration the beam traverses several
integer tunes in the horizontal and vertical planes without any
observed growth in beam oscillation amplitude.

This very rapid acceleration has direct implications for the
design of future muon accelerators. Furthermore, these results
encourage further exploration of non-scaling FFAGs for a broad
range of proton and ion accelerator applications. The practical

realization of the non-scaling FFAG opens up new possibilities
in the design and application of future accelerators, with the
potential for widespread impact in many areas of science,
technology and medicine. One example is the ongoing Particle
Accelerator for MEdicaL Applications (PAMELA) project7, which
uses non-scaling FFAGs as a proton and carbon-ion source for
charged-particle therapy.
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BREAK	THE	SCALING	RULES	TO	SIMPLIFY	THE	MAGNETS		
BUT	KEEP	THE	TUNE	ROUGHLY	CONSTANT.	
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Towards	flat	tunes	
•  One	approach	to	stabilising	the	tunes	over	the	momentum	range	is	

to	add	higher	order	mul)pole	components.		
•  Adding	sextupoles	to	a	linear	non-scaling	FFAG	proved	unsuccessful	

as	chroma)city	correc)on	is	most	effec)ve	where	the	dispersion	is	
large.		

•  Flat	tunes	were	achieved	using	a	wedge-shaped	quadrupole	design	
which	u)lised	edge	focusing	(C.	Johnstone].	

•  Another	approach	is	to	adopt	a	nonlinear	field	that	approximates	the	
scaling	field	but	s)ll	results	in	a	simpler	magnet	and	allows	longer	
straight	sec)ons	to	ease	injec)on/extrac)on	[S.	Machida]	.	
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PAMELA		
A	design	study	for	a	250	MeV	proton	FFAG	+		450	MeV/u	
carbon	non-linear	NS-FFAG	for	hadron	therapy.		
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Ion Sources and Pre-acceleration

Figure 3.1: Proposed PAMELA layout.
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Figure 3.2: The beam injection scheme.
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duction, and the 6 and 20 GeVones could be developed as
proton drivers for a neutrino factory.

III. FROM A SCALING TO A NONSCALING FFAG

In order to make this FFAG accelerator easy to con-
struct, the following simplifications are introduced. First,
the radial magnetic field dependence, that is rk, is ex-
panded into multipoles expressed as a truncated Taylor
series. This is equivalent to multipole fields of the same
order, which can be realized in practice for instance by
using superconducting magnets. Second, a wedge-shaped
magnet, of which both the edges lie along radial lines, is
replaced by a rectangular-shaped magnet which makes the
structure of the magnet simpler. Third, three rectangular
magnets of a triplet focusing cell are aligned parallel with
each other on the same girder. In this way, alignment
accuracy is considerably increased. These simplifications
violate the original requirement of scaling FFAG optics
and the accelerator should be called a nonscaling FFAG.
The careful adjustment of parameters can, however, mini-
mize the tune excursion as a function of momentum as we
will see later on. In the following subsections, those sim-
plifications are incrementally added. Notice that the mag-
net packing factor in the following design is changed to
0.48 to reduce the maximum field strength.

A. Multipole expansion and truncation

The magnetic field profile Bz can be expressed as

Bz ¼ Bz0

!
r0 þ r

r0

"
k

¼ Bz0

!
1þ

X

n¼1

1

n!

kðk$ 1Þ & & & ðk$ nþ 1Þ
r0

n rn
"
: (3)

The radius of expansion r0 is determined as the middle
point of the orbit shift at the center of F and D separately
when the field profile without truncation is employed.
It is kept the same in the following study. The Enge-type

fringe field with a constant extent of 60 mm is assumed.
The magnet is wedge-shaped and aligned such that three
triplet magnets face the machine center as that in a scaling
FFAG.
In practice, it is desirable to limit the multipole order;

depending on the behavior of tune excursions as shown in
Fig. 3 where multipoles up to n ¼ 3, 4, 5 (octupole,
decapole, and dodecapole, respectively) are included.
The maximum variation of the total horizontal tune with
multipoles up to decapole is 0.056 and of the total vertical
tune is 0.029, both of which are well within half an integer
of total tune.
In the case where terms of the multipole expansion up to

and including the decapole component are included, the
effects of the two extreme field falloff shapes are also
examined. In one case the extent of the falloff is propor-
tional to orbit radius whereas in the other case the extent is

TABLE IV. Geometrical lattice parameters as a function of
number of cells for a 6:87 GeV=c machine, that is a kinetic
energy of 6 GeV for a proton.

Number of
cells

Radius
[m]

Drift
length
[m]

Orbit
shift
[m]

Magnet
length
[m] O=M

40 76.619 7.221 0.215 0.963 0.223
48 79:095 6:212 0:155 0:828 0:187
56 81.688 5.499 0.119 0.733 0.162

TABLE V. Geometrical lattice parameters as a function of
number of cells for a 20:92 GeV=c machine, that is a kinetic
energy of 20 GeV for a proton.

Number of
cells

Radius
[m]

Drift
length
[m]

Orbit
shift
[m]

Magnet
length
[m] O=M

64 168.811 9.944 0.188 1.326 0.142
80 172:636 8:135 0:124 1:085 0:114
96 176.462 6.930 0.088 0.924 0.095

TABLE III. Geometrical lattice parameters as a function of
number of cells for a 2:25 GeV=c machine, that is a kinetic
energy of 1.5 GeV for a proton.

Number of
cells

Radius
[m]

Drift
length
[m]

Orbit
shift
[m]

Magnet
length
[m] O=M

20 21.996 4.146 0.231 0.553 0.418
24 22:767 3:576 0:171 0:477 0:358
32 24.118 2.841 0.105 0.379 0.276

FIG. 2. (Color) Footprint of a 12 cell FFAG. The red rectangles
indicate the position of the magnets. Two dotted lines show
orbits of 0:243 GeV=c (inside) and 0.729 (outside) GeV=c
proton.
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4.3.2. Tune Variation

As mentioned above, the scaling field profile is expanded about some expansion radius
r

0

and multipole terms from dipole to decapole are included. This expansion to the
fourth order can be written as in Eqn. 4.1.

B

y

= B

0

h
1 +

k(r � r

0

)

1! r
0

+
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+
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0

)3

3! r3
0

+
(k � 3)(k � 2)(k � 1)k(r � r

0

)4

4! r4
0

i (4.1)

The departure of the magnetic field from the ideal field profile depends on both the
distance from the expansion radius and on the number of multipole terms added. In
order to minimize the distance over the momentum range, the expansion radius should
be set to the centre of the orbit excursion. The orbit excursion can be established, a
priori, by finding the maximum and minimum momentum trajectories in the scaling
FFAG case. The appropriate r

0

and corresponding field B
0

to use in the expansion
equation is then established.

Secondly, the number of necessary multipole components that give an acceptable
tune variation over the momentum range can be determined. The tune variation (as
calculated by ZGOUBI) when multipoles up to the octupole and decapole are included
is shown in Figure 4.4 and the tune variations are given in Table 4.3. The variation of
the total machine tune in both the octupole and decapole case are well within half an
integer. These results illustrate that the design method for constraining betatron tunes
is successful.

(a) (b)

Figure 4.4: Cell tunes throughout acceleration for the case of rectangular shaped mag-
nets using a polynomial fit to the ideal field profile with the three magnets
aligned parallel. Horizontal cell tune in (a) and vertical cell tune in (b).
Dashed lines and associated numbers show total tune of a 12 cell ring.
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inversely proportional to orbit radius [17]. The difference
is small as shown in Fig. 4.

B. Rectangular magnet

The lattice magnets become simpler to construct and
align when they are rectangular rather than wedge or sector
shaped. For the purpose of studying the specific effect that
using rectangular magnets has on lattice dynamics, the
orientation of the magnets remains the same at this stage

so that the three rectangular magnets face the machine
center.
An idealized rectangular magnet can be defined with

field lines parallel to the magnet axis. The field profile is
represented in a Cartesian coordinate system as

Bz ¼ Bz0

!
y0 þ y

y0

"
k

¼ Bz0

!
1þ

X

n¼1

1

n!

kðk$ 1Þ & & & ðk$ nþ 1Þ
y0

n yn
"
; (4)

where y0 at the F magnet and D magnet are the same as r0
defined in the previous section. Multipoles up to n ¼ 3, 4,
5 (octupole, decapole, and dodecapole, respectively) are
included. A line perpendicular to each F magnet axis
intersects that of the D magnet at the machine center, as
shown in Fig. 5. The Enge-type fringe field with a constant
extent of 60 mm is assumed. As the magnets are rectangu-
lar, it is reasonable to assume that the fringe field extent is
constant and independent of radial position.
The resulting betatron tunes throughout acceleration are

shown in Fig. 6. The maximum variation of the total
horizontal tune with multipoles up to decapole is 0.042
and of the total vertical tune is 0.299, both of which are
well within half an integer of total tune.

C. Parallel alignment

To further simplify alignment issues, the three multipole
magnets are aligned parallel with each other. As shown in
Fig. 7, both F magnets are rotated with respect to the
magnet center so that the three magnets become parallel.
This will lead, in a realistic scenario, to a transverse offset

FIG. 5. Converting wedge-shaped magnets (dotted line) to
rectangular magnets (solid line). The magnet center is un-
changed and the three magnets face the machine center.

FIG. 3. (Color) Cell tunes throughout acceleration for the case of
wedge-shaped magnets with different order of truncation.
Horizontal cell tune in (a) and vertical cell tune in (b). Dashed
lines and associated numbers show total tune of a 12 cell ring.

FIG. 4. (Color) Cell tunes throughout acceleration for the case of
wedge-shaped magnets with different models of the fringe field
falloff. Horizontal cell tune in (a) and vertical cell tune in (b).
Notice that the scale of ordinate is 10 times smaller than Fig. 3.
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between the magnets in the triplet in order to optimize the
magnetic bore size. The field profile of each magnet is the
same as in the previous section, namely the multipoles up
to a certain order are included and the fringe field has a
constant extent of 60 mm.

The resulting tunes throughout acceleration are shown in
Fig. 8. In the case up to decapole, the maximum variation
of the total horizontal tune is 0.092 and of the total vertical
tune is 0.250. These values are very similar to the case
before and well within half an integer.

D. Dynamic aperture

A calculation of the dynamic aperture in the case of
rectangular magnets with parallel alignment is made. The
calculation covers a cell tune range of 0.70–0.75 and 0.25–
0.30 in the horizontal and vertical plane, respectively. In
each of these scans, the tune in just one transverse plane is
varied while in the other transverse plane it is fixed at the
nominal value described above. The calculation is made at
injection energy to study the case where the beam is at its
largest size in physical space. An error-free lattice is
assumed and multipole components up to decapole are
included. To select a particular value in the tune space,
the field index k (and hence the coefficients of each multi-
pole term) and the ratio of the F and D strength are
adjusted.
The search for dynamic aperture begins by tracking for

1000 turns a single particle that has identical starting
conditions in both planes—in each case the initial coordi-

nate is given by !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J=!x;y

q
and the initial angle is zero. J

is the action variable and !x;y is the horizontal and vertical
Twiss parameter. The tracking is started at 2J ¼
1" mmmrad normalized amplitude and then increased in
steps of 1" mmmrad until the particle is lost. The dynamic
aperture is given by the highest amplitude particle that
survives tracking.
It is clear from the results shown in Fig. 9 that it is

possible to choose a point in the tune space where the
dynamic aperture is more than 30"mmmrad normalized
in both transverse places, which is sufficient for our pur-
poses. One of the local minima in the dynamic aperture
results in Fig. 9 can be attributed to a coupling between the
transverse planes where the sum of the transverse tunes is

FIG. 8. (Color) Cell tunes throughout acceleration for the case of
rectangular-shaped magnets with different order of truncation.
Three magnets are aligned parallel with each other. Horizontal
cell tune in (a) and vertical cell tune in (b). Dashed lines and
associated numbers show total tune of a 12 cell ring.

FIG. 7. Converting rectangular magnets facing the machine
center (dotted line) to rectangular magnets aligned parallel
with each other (solid line).

FIG. 6. (Color) Cell tunes throughout acceleration for the case of
rectangular-shaped magnets with different order of truncation.
Three magnets face the machine center as in Fig. 5. The
horizontal cell tune is shown in (a) and the vertical cell tune in
(b). Dashed lines and associated numbers show total tune of a 12
cell ring.
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Leo:	Rectangular	instead	of	wedge-shaped	magnets.	
Right:	Magnets	aligned	parallel	rather	than	along	an	
arc.		

(0.75, 0.25), respectively. Previous studies show that values
around those numbers give moderate lattice functions and
maximize dynamic aperture. We further assume that the
length of each magnet and the space between them is
equal. We included the Enge-type fringe field [16].
Under these conditions, the field index k and maximum
magnetic field on the beam orbit can be evaluated as a
function of cell number as in Table I. The maximum field is
normalized for a particle momentum of 1 GeV=c with a
reference orbit radius of 10 m.

Second, this table can be scaled for any particle momen-
tum and machine radius. Once the maximum momentum

and the maximum allowed field strength are specified, the
footprint of a lattice along with other design parameters
such as long drift length and orbit shift can be calculated.
For example, Table II shows the geometrical lattice pa-
rameters for a maximum momentum of 0:729 GeV=c,
which corresponds to a kinetic energy of 0.250 GeV for a
proton, with the maximum field strength of 4 Ton the beam
orbit. In order to calculate an orbit shift, we assume that the
ratio of the extraction momentum to the injection momen-
tum is 3.
The choice of cell number depends mostly on hardware

restrictions. The number of cells and machine radius
should be kept to a minimum to reduce the machine foot-
print. Drift length should be long enough to accommodate
injection, extraction, and rf systems. The orbit shift should
be minimized to reduce magnet aperture and cost as a
result. Magnet length has less impact, but a smaller ratio
of aperture over magnet length is preferable. For this
momentum, we have chosen a 12 cell lattice mainly be-
cause of a compromise between machine size and orbit
shift. This solution is highlighted in bold in Table II. The
footprint of the lattice is shown in Fig. 2.
Following the same design principles, the parameters of

higher momentum FFAG accelerators are calculated as
shown in Tables III, IV, and V. The maximum field strength
is 6 T in the last example. Numbers in boldface indicate the
preferred configuration.
The ratio of the extraction momentum to the injection

momentum is 3 in all the examples so that it is possible to
make a cascade of FFAG accelerators for different mo-
menta, using a lower energy FFAG as an injector. The
0.25 GeV machine can be considered suitable for proton
therapy, the 1.5 GeV machine for the accelerator driven
subcritical reactor and as a proton driver for neutron pro-

TABLE I. Number of cells and field index k which give the cell tune of (0.75, 0.25). Maximum field strength is also shown for a
particle momentum of 1 GeV=c with a reference orbit radius of 10 m.

Number of cells 8 12 16 20 24 32 40 48 56 64 80 96 112 128
Field index k 18.6 39.3 67.3 103 145 252 390 560 755 985 1530 2200 3000 3920
Maximum field strength [T] 2.9 3.4 3.7 3.9 4.0 4.3 4.5 4.6 4.8 4.8 5.0 5.1 5.2 5.3

TABLE II. Geometrical lattice parameters as a function of number of cells for a 0:729 GeV=c machine, that is a kinetic energy of
0.250 GeV for a proton.

Number of cells Radius [m] Drift length [m] Orbit shift [m] Magnet length [m] O=Ma

8 5.376 2.533 0.293 0.338 0.868
12 6:251 1:964 0:168 0:262 0:642
16 6.751 1.591 0.108 0.212 0.508
20 7.126 1.343 0.075 0.179 0.418
24 7.376 1.159 0.055 0.154 0.358

aO=M is the ratio of orbit shift over magnet length.
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FIG. 1. (Color) From Ref. [13]. Stability diagram shows two
stability regions. Upright numbers indicate vertical cell tune and
vertically aligned numbers indicate horizontal cell tune. Lines
are drawn with 0.05 step.
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Truncated	Taylor	series	approxima)ng	the	scaling	field.	

Second	stability	region	of	Hill’s	equa)on.	



PAMELA	magnets	

The PAMELA Conceptual Design Report

(a) (b)

Figure 5.2: Typical particle traces through the PAMELA triplet. The F and D magnets
are indicated schematically by the red and green boxes.

field and magnet aperture, two designs will be presented below, one assuming an o↵set
and one without. For the proton lattice only a non-o↵set solution will be presented.

(a) (b)

Figure 5.3: Vertical magnetic field of the proton ring F and D magnet in (a) and (b),
respectively. Shown are the field from the ideal scaling law and the real field
the magnet will provide.

Tracking studies show a stable working point for the PAMELA proton lattice for a
k-value of 38 at a reference orbit of 6.251m. B

0

is 1.8564T and �2.3205T for the F
and D magnet, respectively. The equation above defines only the shape of the vertical
magnetic field; important for the magnet design is the field experienced by the particles.
In other words, the minimum and maximum radius of the particles in the magnets has
to be determined. This was achieved using tracking studies with the code ZGOUBI

56
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Magnets

(a) (b)

Figure 5.8: (a) Schematic of a double-helix dipole. (b) A double-helix dipole in 3D.

of the magnet (and therefore field quality), but locally perturb the magnetic field within
the magnet.
To understand the source of these unwanted field components it is useful to remember

the working principle of the double-helix coil. Each helical coil in general generates two
field components: the multipole field and a solenoidal field. The second helix does the
same, but the direction of the solenoidal field is such that it is supposed to cancel out
the field of the first helical coil.
Figure 5.10 (a) shows the frontal view of two double helix coils, where the longitudinal

variation of the wire produces an arbitrary multipole field. It is clear from this that the
solenoidal field can never cancel, because two consecutive layers for obvious reasons can
never be at the same radius. The magnetic field of a solenoid at its centre can be
calculated easily [45]:

B

Sol

= JaF (↵, �) . (5.11)

F is a geometry dependent function, ↵ is the ratio of the outer and inner radius a of
the coil and � the ratio of the half length of the coil to the inner radius. The geometry
factor F changes very little for consecutive layers and the current density J is obviously
fixed. What does change is the inner radius for di↵erent layers, which leads to a slightly
di↵erent solenoidal field.
This can be remedied relatively easily by changing the stacking sequence of the layers.

Following the double-helix concept the direction of the current changes in each layer
from clockwise to counter-clockwise and vice-versa. By changing the direction only
every other layer, which is shown in Figure 5.10 (b), the situation is much improved.
Each double-helix coil will still produce insu�cient compensation and thus a remaining
solenoidal field. However, the residual solenoidal field of the two double-helix coils shown
in the figure will now have a di↵erent polarity, which in e↵ect will almost cancel.
This di↵erent stacking scheme has been named quadruple-helical coil owing to the
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•  Mul)pole	components	up	to	decapole	found	to	be	sufficient	to	stabilise	the	tunes.	

between the magnets in the triplet in order to optimize the
magnetic bore size. The field profile of each magnet is the
same as in the previous section, namely the multipoles up
to a certain order are included and the fringe field has a
constant extent of 60 mm.

The resulting tunes throughout acceleration are shown in
Fig. 8. In the case up to decapole, the maximum variation
of the total horizontal tune is 0.092 and of the total vertical
tune is 0.250. These values are very similar to the case
before and well within half an integer.

D. Dynamic aperture

A calculation of the dynamic aperture in the case of
rectangular magnets with parallel alignment is made. The
calculation covers a cell tune range of 0.70–0.75 and 0.25–
0.30 in the horizontal and vertical plane, respectively. In
each of these scans, the tune in just one transverse plane is
varied while in the other transverse plane it is fixed at the
nominal value described above. The calculation is made at
injection energy to study the case where the beam is at its
largest size in physical space. An error-free lattice is
assumed and multipole components up to decapole are
included. To select a particular value in the tune space,
the field index k (and hence the coefficients of each multi-
pole term) and the ratio of the F and D strength are
adjusted.
The search for dynamic aperture begins by tracking for

1000 turns a single particle that has identical starting
conditions in both planes—in each case the initial coordi-

nate is given by !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J=!x;y

q
and the initial angle is zero. J

is the action variable and !x;y is the horizontal and vertical
Twiss parameter. The tracking is started at 2J ¼
1" mmmrad normalized amplitude and then increased in
steps of 1" mmmrad until the particle is lost. The dynamic
aperture is given by the highest amplitude particle that
survives tracking.
It is clear from the results shown in Fig. 9 that it is

possible to choose a point in the tune space where the
dynamic aperture is more than 30"mmmrad normalized
in both transverse places, which is sufficient for our pur-
poses. One of the local minima in the dynamic aperture
results in Fig. 9 can be attributed to a coupling between the
transverse planes where the sum of the transverse tunes is

FIG. 8. (Color) Cell tunes throughout acceleration for the case of
rectangular-shaped magnets with different order of truncation.
Three magnets are aligned parallel with each other. Horizontal
cell tune in (a) and vertical cell tune in (b). Dashed lines and
associated numbers show total tune of a 12 cell ring.

FIG. 7. Converting rectangular magnets facing the machine
center (dotted line) to rectangular magnets aligned parallel
with each other (solid line).

FIG. 6. (Color) Cell tunes throughout acceleration for the case of
rectangular-shaped magnets with different order of truncation.
Three magnets face the machine center as in Fig. 5. The
horizontal cell tune is shown in (a) and the vertical cell tune in
(b). Dashed lines and associated numbers show total tune of a 12
cell ring.
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•  Double-helix	SC	coils	create	each	mul)pole	
component.	
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LINEAR, NON-SCALING MW DRIVERS 
Conceptual designs have been made at BNL for several 

proton and heavy ion, high power (0.05 up to 100 MW) 
drivers, and a summary, with references, is given in [2]. 
Linear, F(–) D(+) F(–) triplet lattices are proposed for the 
1 to 11.6 GeV, proton energies and the 400 MeV/u, U238 
ion energy. The beam dynamics differs from that for the 
ȝ± ring, of the previous section, in that normalised, beam 
emittances are much less, space charge forces occur, the 
acceleration is in the stable region, and operation is far 
away from isochronism, with the Ȗ-values well below Ȗt. 
Both designs are similar, however, in that many integer 
betatron resonances are crossed, and the rings use many 
cells, with straight sections of § 2.5 m. 

A 4 MW, 50 Hz, 11.6 GeV proton driver for a Neutrino 
Factory is an example of one BNL design. It has a series 
chain of three, concentric rings in a common tunnel, with 
energy spans, 0.4 to 1.5, 1.5 to 4.45 and 4.45 to 11.6 GeV. 
Each ring has 136 triplet cells, with lengths of 5.934 m, 
6.022 m and 6.109 m, respectively. A time of 6-10 ms is 
needed for acceleration using ferrite tuned cavities, and a 
faster option is a harmonic jump method [2], with a fixed 
frequency rf system. Both schemes are challenging due to 
the requirement for a small number of proton bunches. 
The 2.5 m, straight sections appear too short to achieve a 
very low beam loss, H¯ injection system for the first ring. 
The fast extraction, kicker magnets are not as challenging, 
however, as for the ȝ± ring, as the emittances of the proton 
beam are so much less than those for the muons. 

LINEAR NON-SCALING CANCER RINGS 
Tumour irradiation by proton or carbon ions is used for 

advanced cancer therapy. The accelerators employed for 
this purpose include compact, superconducting cyclotrons 
(with an energy degrader) and a slow-cycling synchrotron 
(with resonant extraction over a wide range of energies). 
Initiatives for other types of accelerators include a scaling 
FFAG, faster-cycling synchrotrons and two, small radius 
linear, non-scaling types of FFAG ring, one of which is 
outlined here [3], together with its related gantry.  

Three concentric rings, each with 36 linear, non-scaling 
doublet cells sit in a common plane and enclosure. Ring 
circumferences are 34.56, 43.2 and 51.84 m (ratio 4:5:6). 
The two inner rings act in series to accelerate H+ ions up 
to 250 MeV, and the two outer, C6+ up to 400 MeV/u. The 
F(–)D(+) cells have a total length of order 1 m, and the 
drifts are 0.3 and 0.1 m. Beam dynamics is similar to that  
for the proton and ion drivers, and rapid, harmonic jump 
acceleration is assumed, with 10.8 MV peak needed in the 
outer ring, at a frequency § 1.3 GHz. 

A compact, linear, non-scaling, superconducting FFAG 
gantry, with an FDDF type lattice cell, offers the promise 
of a substantial, weight reduction [3], compared with the 
ion gantries that are currently under development.  

NON-LINEAR, NON-SCALING DRIVER 
A non-linear, non-scaling and non-isochronous NFFAG 

is an ISS option [5] for a 50 Hz, 4 MW, 3-10 GeV, proton 
driver at a Neutrino Factory. The orbit circumference has 
to be 801.447 m, at 10 GeV, to be compatible with the 
associated, 20 GeV, ȝ± decay rings. Insertions are not 
required for a ring of this size, so the magnet lattice uses 
only identical “pumplet” cells, of the type noted earlier. 
The number of cells is 66, so that the cell orbit length at 
10 GeV is 12.1431 m. For an injector, a 50 Hz, 0.2 GeV, 
H¯ linac feeds a 50 Hz, 0.2 to 3 GeV booster synchrotron, 
rather than an NFFAG, as it may have a more efficient, 
H¯ injection system. Figure 1 is a layout drawing for the 
linac, RCS booster and NFFAG driver ring. 

Figure1: Layout drawing of the 4 MW, NFFAG driver. 
Five magnets, of three, different types are used for the 

dFDFdO “pumplet” cell. The non-linear d and D units are 
vertically focusing, parallel edged, combined function 
magnets, but the d have (–), and the D have (+), bending 
The F is a (+) bend, non-linear, horizontally focusing, 
combined function unit, with edges parallel to those of the 
d and D, as indicated in the Figure 2. There are zero entry 
and exit, edge angles, respectively, for the input and the 
output d magnets. 

A modified, linear lattice code allows estimates to be 
made for the non-linear, field parameters needed in the 
cell magnets. Reference orbits are defined for the full 
energy range, starting at the highest energy. Successive 
searches are made for an adjacent orbit of lower energy, 

 
Figure 2: A single lattice cell of the 50 Hz, 4 MW, 3-
10 GeV, NFFAG proton driver ring. 
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Magnets

(a) (b)

Figure 5.8: (a) Schematic of a double-helix dipole. (b) A double-helix dipole in 3D.

of the magnet (and therefore field quality), but locally perturb the magnetic field within
the magnet.
To understand the source of these unwanted field components it is useful to remember

the working principle of the double-helix coil. Each helical coil in general generates two
field components: the multipole field and a solenoidal field. The second helix does the
same, but the direction of the solenoidal field is such that it is supposed to cancel out
the field of the first helical coil.
Figure 5.10 (a) shows the frontal view of two double helix coils, where the longitudinal

variation of the wire produces an arbitrary multipole field. It is clear from this that the
solenoidal field can never cancel, because two consecutive layers for obvious reasons can
never be at the same radius. The magnetic field of a solenoid at its centre can be
calculated easily [45]:

B

Sol

= JaF (↵, �) . (5.11)

F is a geometry dependent function, ↵ is the ratio of the outer and inner radius a of
the coil and � the ratio of the half length of the coil to the inner radius. The geometry
factor F changes very little for consecutive layers and the current density J is obviously
fixed. What does change is the inner radius for di↵erent layers, which leads to a slightly
di↵erent solenoidal field.
This can be remedied relatively easily by changing the stacking sequence of the layers.

Following the double-helix concept the direction of the current changes in each layer
from clockwise to counter-clockwise and vice-versa. By changing the direction only
every other layer, which is shown in Figure 5.10 (b), the situation is much improved.
Each double-helix coil will still produce insu�cient compensation and thus a remaining
solenoidal field. However, the residual solenoidal field of the two double-helix coils shown
in the figure will now have a di↵erent polarity, which in e↵ect will almost cancel.
This di↵erent stacking scheme has been named quadruple-helical coil owing to the
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Enhancement increases with ! but is ameliorated by
increasing fringe length; it also increases extremely rapidly
with x for small fringe lengths. However, it decreases with
increasing k because higher k magnets actually have
weaker fringe fields.

In ring design, this number fills a similar role to the
circumference factor of scaling FFAGs: it is the amount a
theoretical constant bending field must be multiplied by to
find the real maximum field strength in a ring of fixed size
and magnet filling factor.

3. Circumference factor comparison

Symon [1,4] defined ‘‘circumference factor’’ to be the
length of the top-energy closed orbit divided by the circum-
ference of a circle with the maximum curvature found any-
where on the orbit, which is equivalent to C ¼ jBjmax=hByi
where h"i denotes average around the orbit. For spiral scal-
ing VFFAGs with a singlet lattice, C ¼ Fenh=P where P is
the magnet packing factor. For the proton driver lattices
considered in the next section, Fenh ¼ 2:6–2:7 and P#1 ¼
4:3–5:3, giving C ¼ 11:2–14:4. For a synchrotron, C ¼
P#1, determined only by the drift space requirements. The
original MURA note considered FFAGs entirely filled with
magnets (P ¼ 1) when it quoted values of C ¼ 5–6 for
scaling FFAGs, soCPmay be a better metric for comparing
lattice bending efficiency independently of packing factor.
This is just equal to Fenh for the spiral VFFAGs and is
somewhat lower than the values for sector scaling FFAGs
with reverse bends, even though By goes locally negative in
the spiral VFFAG magnet’s exit end field.

III. PROTON DRIVER TRANSVERSE DYNAMICS

Parameters were sought for fixed-field rings to boost the
energy of the two ISIS [10] proton bunches from 800 MeV,
following the outline rf approach in [11]. Lattice cells
containing a single VFFAG magnet and a reasonably long
drift space, with enough dynamic aperture for the 150 mm
mrad geometric emittance proton beam are given in Table I.

The three-dimensional layout of such amachine is shown in
Fig. 8.
The beam power will increase in proportion to energy, so

options are provided for neutron production at 3 GeV, high-
power exotics production at 12 GeV and a ‘‘compromise’’
energy of 5 GeV, which provides more power for neutrons
but perhaps less efficiency. With the mean current 208 "A
presently achievable in ISIS, these would have beam
powers of 0.6, 2.5, and 1.0 MW, respectively, at 50 Hz.
The 12 GeV ring, the most aggressive design, with

applications to neutrino factories and muon colliders,
needed a slightly longer magnet to lower the peak field,
which in turn required larger edge angles. The field en-
hancement was evaluated at x ¼ 2 cm and not 4 cm to

TABLE I. Transverse parameters for VFFAG rings.

Ek;inj 800 MeV
Ek;ext 3 GeV 5 GeV 12 GeV

Mean radius 52 m (2$ ISIS)
Periodicity 80 cells per ring
Cell length 4.0841 m
Drift length 3.3174 m 3.1257 m

Magnet parameters

Magnet length 0.7667 m 0.9584 m
B0 0.5 T 0.4 T
k 2:01 m#1 2:2 m#1

! ¼ tan#edge 2.23 2.535
#edge 65.84% 68.47%

Fringe length f ¼ 0:3 m in B / 1
2 þ 1

2 tanhðz=fÞ
Bext 1.3069 T 2.0036 T 3.5274 T
Bfringe=Bbody 2:6941x¼4 cm 2:6174x¼2 cm

Bmax 3.5210 T 5.3979 T 9.2326 T

Beam optics

yext # yinj 0.4780 m 0.6906 m 0.9895 m
"u (per cell) 71.17% 71.63%

"v 28.60% 19.95%

Qu (ring) 15.815 15.917
Qv 6.357 4.433

Matched injection at drift midpoint

$u 3.445 m 3.506 m
%u 0.426 0.481
$v 7.145 m 10.284 m
%v #0:597 #0:960

FIG. 7. Field enhancements as a function of !, fringe length
(f), and distance from midplane (x) from 0 to 4 cm, in the 3 or
5 GeV magnet design with k ¼ 2:05 m#1.

FIG. 8. Perspective view of the 12 GeV ring.
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Summary	
•  Since	around	the	turn	of	the	century	FFAG	designs	to	meet	various	applica)ons	

have	proliferated	in	recent	years	(scaling	and	non-scaling).	
•  We	must	build	on	these	developments	and	con)nue	to	produce	advances	in	

accelerator	physics.		
•  There	is	plenty	of	scope	for	further	innova)on	in	FFAG	design.	


