Introduction to non-scaling FFAGs
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Non-scaling FFAG

noun

An FFAG that doesn’t satisfy the cardinal conditions of a scaling
FFAG.

abbrev: NS-FFAG, ns-FFAG, NSFFAG, nsFFAG.



BREAK THE SCALING RULES TO MAKE THE MAGNETS
MORE COMPACT AND SIMPLE.
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Make the magnets more compact

 If we could break cardinal conditions (scaling law), FFAG
would be much simpler and magnet would be smaller.
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No gentle slope at low momentum.
- Orbit excursion is shorter.
Constant gradient.
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* Use magnets that produce a linear (or uniform) magnetic field —

dipoles and quadrupoles

* This is known as a linear non-scaling FFAG.



Accelerator Physics: Natural chromaticity

* The tune varies with momentum according to the
chromaticity ¢,
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* The natural chromaticity in the linear lattice is always
negative in both transverse planes.
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* The tune decreases with momentum in a linear lattice.
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Tune variation
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* Many tunes that may corresponds to resonances crossed during
acceleration (e.g. integer tunes).
* Accelerate through them quickly!
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ACCELERATE RAPIDLY IN THE SERPENTINE CHANNEL
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Longitudinal dynamics
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e With sufficient voltage, a channel opens up between stable buckets
* Fix the RF parameters (voltage, phase and frequency) and accelerate rapidly in this
channel (out-of-bucket, gutter or serpentine acceleration).

. . FFAG16 school, Sep 4th & 5th, 2016 9
Credit: S. Machida



FFAG16 school, Sep 4th & 5th, 2016




Linear non-scaling FFAG: Design Process

* Ensure cell tunes are in stable region 0 < Q,, < 0.5 throughout
acceleration.

* A ring consisting of many identical cells is preferred — high
degree of symmetry improves dynamic aperture.

* Minimise magnet apertures: keep betatron functions and
dispersion under control.

 Optional for very rapid acceleration: Ensure a (roughly)
parabolic time of flight (TOF) to allow serpentine acceleration.

* Design a realistic injection and extraction scheme.

 Perform error study to check feasibility w.r.t. alignment
tolerances etc.



Electron Model for Many Applications:

(EMMA)

* A proof-of-principle 10-20 MeV electron FFAG.
* A densely packed ring consisting of 42 DF doublets.

Quadrupoles are shifted to get the bending component.
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* QD, QF order change
+ Extraction line cell change
+ Only one IOT
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Fig. 5. Plan section of the EMMA cell showing the quadrupole doublet and RF cavity.

Goals — Ensure betatron function and dispersion allow a compact magnet. Ensure a
low momentum compaction factor and parabolic time of flight.
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Simulated COD rms [mm]

X-(x) [mm]

COD in EMMA

Correcting the harmonics of the
magnet misalignments reduces
both the COD and the accelerated
orbit across the momentum range.
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closed orbit [mm)]

closed orbit [mm)]

Source of horizontal COD

* Difference between on and off tells COD by
extraction septum.
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e Kink at extraction septum
(between cell 26 and 27)

e COD amplitude is ~8 mm.
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The culprit — Septum stray field.

v kicker septum
magnet magnet

Figure 2: Septum, showing magnetic field magnitudes [5].
Transition to white is at 5 mT.

Because of the short drift space, a 65 degree injection septum is required.
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Injection/Extraction
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Figure 5: Injection of beams of various energies into
EMMA. Energies are from 10 to 20 MeV in 1 MeV steps.
Each color is a different energy: violet, toward the top, is
the highest energy, and red, toward the bottom, is the low-
est. For a given color, different lines are different initial
conditions on the edge of an ellipse as in Fig./3:16 school, Sep 4th & 5th, 2016 18



Natural chromaticity effects

67 6
1 i . .
Il il Al Apparent decay in amplitude due to
E ol E ol * decoherence. Pattern of decoherence
"l = | | depends on the momentum distribution
milll ~4 [C. Edmonds PRST-AB 17, 054401 (2014)]
_60 10 20 30 40 50 60 70 80 _60 10 20 30 40 50 60 70 80
turn number turn number
(a) Gaussian momentum distribution (b) Uniform momentum distribution
i -~ | Iod T 1 o R
. [ ' X d | A | X . X
o /\\ =19 /\ 1 =19 \
> | / ' . ] ,,/ ] . 1 ‘ .
8 time — | time L) time

before integer tune  right after integer long after integer corssing
» time
Integer crossing + chromaticity = emittance growth [J. Garland, FFAG13]

FFAG16 school, Sep 4th & 5th, 2016 19



EMMA commissioning (2010 - 2012)
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Acceleration results
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S. Machida et al, Nat. Physics (2012)

21



BREAK THE SCALING RULES TO SIMPLIFY THE MAGNETS
BUT KEEP THE TUNE ROUGHLY CONSTANT.
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22



Towards flat tunes

One approach to stabilising the tunes over the momentum range is
to add higher order multipole components.

Adding sextupoles to a linear non-scaling FFAG proved unsuccessful
as chromaticity correction is most effective where the dispersion is
large.

Flat tunes were achieved using a wedge-shaped quadrupole design
which utilised edge focusing (C. Johnstone].

Another approach is to adopt a nonlinear field that approximates the
scaling field but still results in a simpler magnet and allows longer
straight sections to ease injection/extraction [S. Machida] .



PAMELA

A design study for a 250 MeV proton FFAG + 450 MeV/u
carbon non-linear NS-FFAG for hadron therapy.
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Figure 3.1: Proposed PAMELA layout.
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Proton ring footprint.
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PAMELA design features.
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FIG. 1. (Color) From Ref. [13]. Stability diagram shows two
stability regions. Upright numbers indicate vertical cell tune and

.y vertically aligned numbers indicate horizontal cell tune. Lines
@ are drawn with 0.05 step.

0

Left: Rectangular instead of wedge-shaped magnets.

Right: Magnets aligned parallel rather than along an
arc.

Second stability region of Hill’s equation.
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PAMELA magnets
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Multipole components up to decapole found to be sufficient to stabilise the tunes.

* Double-helix SC coils create each multipole
component.
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FIG. 8. Perspective view of the 12 GeV ring.

Vertical FFAG (Brooks, 2013)

Number of publications on FFAGs by UK-based authors as found on epubs.stfc.ac.uk (apart from
the 2004-2005 period where records were separately found).



Summary

Since around the turn of the century FFAG designs to meet various applications
have proliferated in recent years (scaling and non-scaling).

We must build on these developments and continue to produce advances in
accelerator physics.

There is plenty of scope for further innovation in FFAG design.




