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Foreword

• By “Advanced”, it is essentially meant “based on stepwise numerical integration
methods”, with some corollaries - some being of major interest !

- It gives a refined view of charged particle motion through magnetic and electrostatic
devices, this helps understanding the physics.

This also allows access to refined optical settings, as it allows to manipulate field mod-
els.

- A corollary is that a detailed description of the fields in which particles are moving is
required. This is a specificity of the method.

- Specificities of the stepwise ray-tracing method : some of these make it unbeatable, in a
number of utilizations, compared to more classical methodsof beam optics, for instance
spectrometer design, highly non-linear optics, large 6-D particle excursions (kinematic
terms...), etc.That’s what this lecture is also about

• There is a couple of areas where stepwise ray-tracing may be less performing,
compared to standard techniques (matrix transport, 1-turnmap, or other kick-drift
methods). Essentially there :

- CPU time, a potential problem for “long-term tracking” studies

- “symplecticity”. A property to keep an eye when using stepwise methods again for
“long-term tracking”

• It can be too sophisticated ! “squashing a fly with a bulldozer”. For instance in
studying paraxial beam line or ring optics.
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1 Introduction

• In this lecture I will

- introduce basic theoretical material in relation with numerical solving of charged parti-
cle optics problems,

- with the objective of being able to use them later today, in the software workshop, for
the simulation of linear and scaling FFAG cells.

• The lecture is organized in the following way :

1/ I will give a short introduction to stepwise ODE solving methods

3/ We will see how we can simulate, using stepwise ray-tracing methods,

(i) a linear FFAG cell, based on a quadrupole doublet,
(ii) a scaling, KURRI-style dipole triplet cell.

3/ I will introduce to some basic ways, based on ray-tracing,to get

- orbits, global optical parameters : tunes and spectra, chromaticities,
- optical functions inside optical elements,
- multiturn-tracking in a ring made up of these cells,
- dynamical acceptance, etc.
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• The result of this rapid “tour” will be that we will have seen some theoretical
material in relation with the understanding of

(i) what stepwise-based and tracking-based methods bring and some specificities in
their manipulation,

(ii) what one can expect, using them,
(iii) basic ingredients entering in the simulation of linear- and scaling-style FFAG cells

and rings.

• A couple more words, about the software workshop later today:

- We will play with these two types of cells (using the stepwise ray-tracing code Zgoubi) :
- linear ffag cell,
- scaling dipole triplet.

- We will work at producing orbits, 1-turn maps, optical functions, motion spectra, DA,
as time allows.

Data analisis from Zgoubi ray-tracing will use the zpop interface, or pyZgoubi (S. Ty-
gier)

Graphics will use zpop, or various simple gnuplot files, or again pyZgoubi
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• To conclude with this introduction, WHAT THIS LECTURE IS NOTABOUT :
IT IS NOT ABOUT MATRIX (approximate) SOLUTION OFdm~v

dt
= q~v × ~B.

WE WON’T DO THAT !

Linear optics : Lorentz equation is simplified to Hill equation

This allows preliminary design steps based on regular matrix methods

First : find a closed orbit← from the FFAG parameters.

Then : linear approximationabout that closed orbit

x′′ + 1−n
ρ2

x = 0, z′′ + n
ρ2
z = 0

with n(s) = − ρ(s)
B(s)

dB
dx ≈ −

ρ
B

dB
dr (scalloping is neglected)
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Indexn(s) andK in B = B0(
r
r0
)K relate as follows:

dB
dr = KB0

r0
( r
r0
)K−1 = KB

r so that K/r = −n/ρ

The matrix representing a sector has the formM =

[

cos(s
√
k) 1√

k
sin(s
√
k)

−
√
k sin(s

√
k) cos(s

√
k)

]

with k = (1− n)/ρ2 (radial motion) ork = n/ρ2 (vertical motion)

The geometry provides the wedge angles, hence wedge matrices,MFe1, MFe2, MDe1, M2e2

The product matrix representing a D-F sector yields the phase advance :

cos(µ) = 1
2Tr(MFe2 ×MF ×MFe1 ×MDe2 ×MD ×MDe1)/2 ,...
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2 An ODE ?? Where ??

• Here ! We need to solve an Ordinary Differential Equation, namely, as we know :

dm~v
dt

= q~v × ~B

For that we want to find a numerical approximation to the solution, using some efficient
(accurate and fast, as much as doable) numerical method.

•Many numerical methods are available,
to solve ODEs / push particles :

Euler,
Taylor series,
Runge-Kutta (very popular),
Multistep ...

u (M1)
M1

R (M 1)

u (M0)

R (M
0

)

z

x
y

Z

Y

X

M

0

Reference

Pushing a particle fromM0 toM1.

• We will comment on a Taylor series method, as it is the method installed in the
ray-tracing code we want to use later today
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• Zgoubi numerical integrator :

u (M1)
M1

R (M 1)

u (M0)

R (M
0

)

z

x
y

Z

Y

X

M

0

Reference

Pushing a particle fromM0 to M1.

Position : ~R(M1) ≈ ~R(M0) + ~u(M0)∆s + ~u′(M0)
∆s2

2!
+ ... + ~u′′′′′(M0)

∆s6

6!
(1)

Velocity : ~u(M1) ≈ ~u(M0) + ~u′(M0)∆s + ~u′′(M0)
∆s2

2!
+ ... + ~u′′′′′(M0)

∆s5

5!
(2)

(Definitely, no matrix transport there !!)
And as well, when integrating in electrostatic fields :

Rigidity : (Bρ)(M1) ≈ (Bρ)(M0) + (Bρ)′(M0)∆s + ... + (Bρ)′′′′′(M0)
∆s5

5! (3)

Time : T (M1) ≈ T (M0) + T ′(M0)∆s + T ′′(M0)
∆s2

2 + ... + T ′′′′′(M0)
∆s5

5! (4)

Let’s see a little more in detail - jump to Zgoubi Users’ Guide, page 19
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3 Let’s Illustrate the Sophistication With an Example That Has Nothing to do With
FFAGs

Taken from real life : Optimization of spin transport throug h an helical siberian
snake

3.1 Helical siberian snake

OPERA model of the AGS cold snake :
twisted dipole coil + superimposed solenoid coil

(not shown) for coupling compensation

Helical trajectory in a (“full”, 180 deg spin
rotation) helical dipole

Equations of the helical wiggler field :

Br = 2B0 [I0(kr)− (i/kr)I1(kr)] sin(θ − kz)

Bθ = (2B0/kr)I1(kr) cos(θ − kz) (5)

Bz = −2B0J1(kr) cos(θ − kz)

We use such snakes
in the AGS (2, “partial snakes”)

and in RHIC (2 per ring, “full snakes”),
for 250 GeV polarized proton collisions.



F
FA

G
S

chool,Im
perialC

ollege,London,4-5
S

ept.
2016

Let’s Illustrate With an Example (cont’d)

• It is necessary to minimize coupling from helical dipole atGγ ≈ 9 (proton E≈4.7 GeV).

• This is in order to minimize depolarization effect when proton beam is accelerated
through that energy region (depolarizing condition :Gγ ±Qy =integer).

• Minimizing coupling induced by snake is based on optimal field compensation
solenoid.

Integral
∫

Bz(s)ds of longitudinal field component
along orbit.

Solenoid field set such that
∫

Bz(s)ds vanishes at
Gγ ≈ 9.
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• In the mean time, helical trajectory
has to remained centered on snake axis.
And spin has to z-rotate by defined
value,22 degree.
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• This requires constraints on helical trajectory across thesnake.
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•What a ’FIT’ procedure can do (it can do a lot !) :

’OBJET’
15.3962411375d3 ! G.gamma=9
2
1 1
-1.031655822 0. 0. 0. 0. 1. ’o’
1 1

’DRIFT’ DRIF CSNK
-10.
’TOSCA’ ! Helix + solenoid are defined using 2 OPERA 3-D field maps
0 2
10.15 1. 1. 1. ! 10.15 yields precession equal to that of full hlx+sol map
HEADER_9 ! 0.960563380 = 68.2% hlx /71
321 29 29 15.2 0.960563380 0.2172656783 ! Cancel sum_BX.ds at Ggamma=9
ags-full-coilv5-x06-rerun2-x071-integral-x5y5z10mm.table
ags-full-sold3-only-nodal-x5y5z10mm-wasactually-integral.table
0 0 0 0
2
.1
2 0. .0 0. 0.
’DRIFT’ DRIF CSNK
-10.

’FIT’
2 ! Two variables
1 30 0 [-1.5,1.5] ! Vary Y_0 (prtcl 1) (to ensure centering of orbit on snake axis)
6 25 0 .05 ! Vary field of solenoid map (to ensure \int B_z(s) ds ==0)
2 1e-10 ! Two constraints
4.3 1 2 6 0. 1. 0 ! trajectory across snake should be centered, |max_Y| = |min_Y|
4.9 1 1 6 0. .1 0 ! particl should experiences sum(BX.ds)=0 in snake
’END’
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4 Back to FFAGs... Simulating FFAG accelerators

4.1 Scaling FFAG

Main parameters :

Einj − Emax MeV 12 - 150
orbit radius m 4.47 - 5.20
lattice / K DFD × 12 / 7.6
βr / βz max. m 2.5 / 4.5
νr / νz 3.7 / 1.3
BD / BF T 0.2-0.78 / 0.5-1.63
gap cm 23.2 - 4.2
RF swing MHz 1.5 - 4.5
voltage p-to-p kV 2

PoP scaling triplet
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4.1.1 Simulation of a scaling dipole triplet

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

��������
��������
��������

��������
��������
��������

30 deg

4.3 m

5.47 m

D

F

D

4.75

10.24

3.43

DFD triplet.

• A geometrical model based on the
superposition of independent contributions
of theN dipoles, to provide the mid-plane

field, at all (r, θ, z = 0) :

Bz(r, θ) =
∑

i=1,N Bz0,iFi(r, θ)Ri(r)

• Field at (r, θ, z), off mid-plane, is
obtained by Taylor expansion accounting

for Maxwell’s equations.
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* FFAG triplet. 150MeV machine                       *                          

  Z=5cm                     (b) 
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Yes ! from ray-tracing :
field experienced alongr0 = 4.87 m arc,

at

{

z = 0
z = 5cm

,

in KURRI-style DFD dipole triplet.
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4.1.2 How to simulate that dipole N-tuple in a ray-tracing code ?

125 (FFAG keyword) and Fig. 11 p. 88 (define dipole geometry),page 112 (analytical

(The list of available optical elements can be found in pp. 7,8 (PART A of the
guide, tells how it works) or as well in pp. 177, 178 (PART B of the guide, tells inpput
data formatting in zgoubi.dat))
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4.1.3 What can be expected from ray-tracing

• Accurate trajectory computation in arbitrary fields,

• And then, from trajectories, everything can be derived :

- optical functions

- and higher order : optical aberrations

- “multi-turn tracking”

- phase-space motion

- motion spectra (“wavenumbers” aka “tunes”)

- etc, etc,
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4.2.1 EMMA Simulations

EMMA injection section ...

... and its ray-tracing simula-
tion : optical references at three
different energies
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4.2.2 How to simulate a quadrupole in a ray-tracing code ?

- Straightforward optical element : ’QUADRUPO’

- However we will want to be able to inject multipole components, in order to simu-
late field defects.

So, we may want to consider ’MULTIPOL’ as well

• Following p. 8 (PART A o f the guide) :

Let’s jump to Zgoubi Users’ Guide

QUADRUPO : pp. 138, 139,
MULTIPOL : p. 132
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“How Sophisticated Can The Method be ?” - Cont’d. And Conclusion :
Start-to-End in EMMA


