

Hybrid Cloud for CERN

Dr Helge Meinhard / CERN-IT CxP Forum du Numérique 23-Jun-2016

Hybrid Cloud for CERN - Helge Meinhard at CERN.ch

23-Jun-2016

CERN

- International organisation close to Geneva, straddling Swiss-French border, founded 1954
- Facilities for fundamental research in particle physics
- 21 member states, 1 B CHF budget
- 3'197 staff, fellows, apprentices, ...
- 13'128 associates

Members: Austria, Belgium, Bulgaria, Czech republic, Denmark Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland, United Kingdom Candidate for membership: Romania Associate member: Serbia Observers: European Commission, India, Japan, Russia, Turkey, UNESCO, United States of America Numerous non-member states with collaboration agreement

2'531 staff members, 645 fellows, 21 apprentices 7'000 member states, 1'800 USA, 900 Russia, 270 Japan, ...

Birth place of World-wide Web

Tools (1): LHC

Exploration of a new energy frontier in p-p and Pb-Pb collisions



LHC ring: 27 km circumference

Run 1 (2010-2013): 4+4 TeV Run 2 (2015-2018): 6.5 + 6.5 TeV

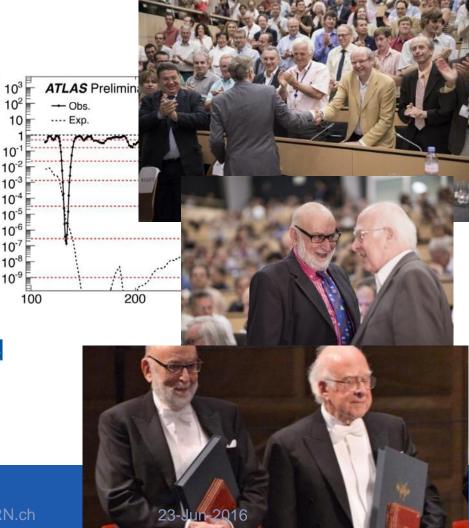
Tools (2): Detectors

LHC 27 km

Tools (2): Detectors

ATLAS (A Toroidal Lhc ApparatuS)

- 25 m diameter, 46 m length, 7'000 tons
- 3'000 scientists (including 1'000 grad students)
- 150 million channels Pb collisions
- 40 MHz collision rate


CMS

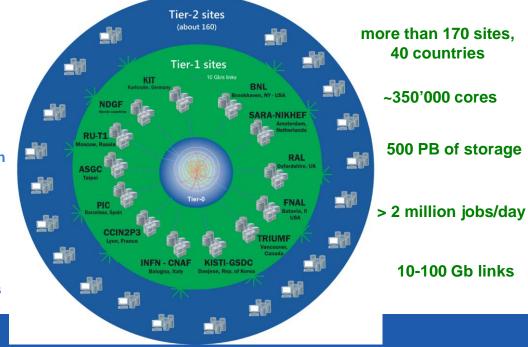
- Event rate after filtering: 300 Hz in Run 1; up to
 - 1'000 Hz in Run 2

Results so far

- Many... the most spectacular one being
- 04 July 2012: Discovery of a "Higgs-like particle"
- March 2013: The particle is indeed the Higgs boson
- 08 Oct 2013 / 10 Dec 2013: Nobel price to Peter Higgs and François Englert
 - CERN, ATLAS and CMS explicitly mentioned

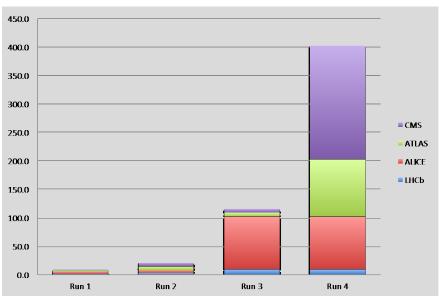
- Up to 6 GB/s to be permanently stored after filtering
- Almost 30 PB/y in Run 1
- Expect ~50 PB/y in Run 2
- 2023: 400 PB/y(?)

Tier-0 (CERN): data recording, reconstruction and distribution


Tier-1: permanent storage, re-processing, analysis

> **Tier-2:** Simulation, end-user analysis

The Worldwide LHC Computing Grid


An International collaboration to distribute and analyse LHC data

Integrates computer centres worldwide that provide computing and storage resource into a single infrastructure accessible by all LHC physicists

Challenges

Run 2:

- Moore's law helps, but not sufficient
- Large effort spent to improve software efficiency
- Exploit multi-threading, new instruction sets, ...
- Still need factor 2 in terms of cores, storage etc.

Tier-0: 15% of WLCG

MEYRIN DATA CENTRE

0	last_value ()
Number of Cores in Meyrin	151.159
Number of Drives in Meyrin	83.709
Number of 10G NIC in Meyrin	9,307
Number of 1G NIC in Meyrin	23.647
Number of Processors in Meyrin	25,215
Number of Servers in Meyrin	13,377
Total Disk Space in Meyrin (TB)	175,900
Total Memory Capacity/Dr Mby CinQTI	nd for CERNG-

WIGNER DATA CENTRE

0	last_value ()
Number of Cores in Wigner	43,328
Number of Drives in Wigner	23,180
 Number of 10G NIC in Wigner 	1,399
 Numer of 1G NIC in Wigner 	5,067
 Number of Processors in Wigner 	5,418
 Number of Servers in Wigner 	2,712
 Total Disk Space in Wigner (TB) 	71,738
же கூடு குடியது குடியது குடு குடு	172

NETWORK AND STORAGE

0	last_value ()
Tape Drives	104
Tape Cartridges	20.517
Data Volume on Tape (TB)	144,038
Free Space on Tape (TB)	41.023
Routers (GPN)	140
Routers (TN)	30
Routers (Others)	108
233witches2016	<u>9</u> 712

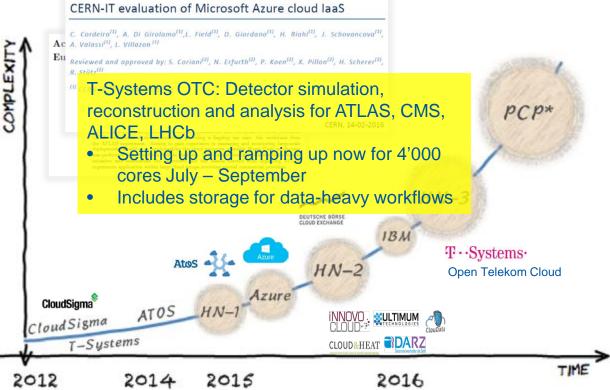
Transforming In-House Resources

We now have

- Full support for physical and virtual servers
- Full support for remote machines
- Horizontal view
 - Responsibilities by layers of service deployment
- Large fraction of resources run as private cloud under OpenStack
- Scaling to large numbers (> 15'000 physical, several 100'000s virtual)
- Support for dynamic host creation/deletion
 - Deploy new services/servers in hours rather than weeks/months
 - Optimise operational and resource efficiency

Scaling up Further: Public Clouds (1)

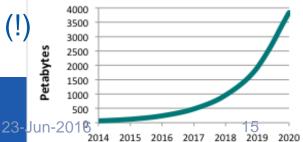
- Additional resources, perhaps later replacing on-premise capacity
- Potential benefits:
 - Economy of scale
 - More elastic, adapts to changing demands
 - Somebody else worries about machines and infrastructure


Scaling up Further: Public Clouds (2)

- Potential issues:
 - Cloud provider's business models not well adapted to procurement rules and procedures of public organisations
 - Lack of skills for and experience with procurements
 - Market largely not targeting compute-heavy tasks
 - Performance metrics/benchmarks not established
 - Legal impediments
 - Not integrated with on-premise resources and/or publicly funded e-infrastructures

CERN Approach

Series of short procurement projects of increasing size and complexity


Some Lessons Learned

- APIs not as stable and well-defined as you would expect them to be
 - Consider requiring support for ecosystem tool such as Terraform, libcloud, jclouds
- Accounting is key required on user side, too
- Benchmarking/performance metrics required
- Avoid brokers they risk adding complexity, cost, intransparency
 - YMMV EMBL and ESA have reported rather positive experience

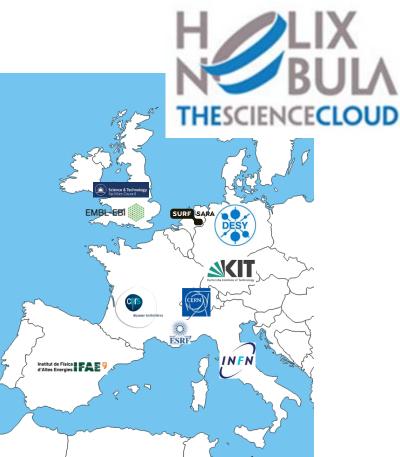
Future Requirements

- Not only LHC, but a number of particle physics projects with high data rates
 - SuperKEKB, HL-LHC, FCC, LBNF, ILC
- Not only particle physics, but also other physics fields (e.g. astronomy)
 - SKA, LSST, CTA
- Not only physics, but also other sciences (e.g. life sciences, material science)
 Forecast storage at EMBL-EBI
 - EBI expects data doubling every year (!)

HELIX NEBULA The Science Cloud Joint Pre-Commercial Procurement Procurers: CERN, CNRS, DESY, EMBL-EBI, ESRF,

IFAE, INFN, KIT, SURFSara, STFC Experts: Trust-IT & EGI.eu

Procurers have committed funds (>1.6M€), manpower, use-cases with applications & data and in-house IT resources


Objective: procure innovative IaaS level cloud services

- Fully and seamlessly integrating commercial cloud (laas) resources with in-house resources and European e-Infrastructures
- To form a hybrid cloud platform for science

Services will be made available to end-users from many research communities: High-energy physics, astronomy, life sciences, neutron/photon sciences, long tail of science

Co-funded via H2020 (Jan'16-Jun'18)

- Grant Agreement 687614
- Total procurement volume: >5M€

Technical Challenges

- Compute
 - Integration of some HPC requirements
- Storage
 - Caching at provider's site, if possible automatically (avoid managed storage)
- Network
 - Connection via GÉANT
 - Support of identity federation (eduGAIN) for IT managers
- Procurement
 - Match of cloud providers' business model with public procurement rules

HNSciCloud – Current Status

- Project started in January 2016
- Tender announced in Jan 2016
- Open Market consultation successfully held
 on 17 March 2016
- Tender material in final phase of preparation
 - To be published this summer

HNSciCloud – Contacts

- Interested?
 - See http://www.hnscicloud.eu/
 - Subscribe to https://www.hrscicloud-announce@cern.ch

Summary

- Public clouds have a large potential of addressing the requirements of public research organisations for ever more resources and of dealing with peak demands
- Using public clouds isn't as easy as you would like it to be
- A full integration of public clouds with on-premise resources and public e-infrastructures is required, and is technically and administratively challenging
- Commercial cloud services are expected to play an increasing role in the computing models of scientific Research Infrastructures as part of a hybrid cloud platform

Merci pour votre attention

http://cern.ch http://cern.ch/it-dep http://cern.ch/wicg http://www.hnscicloud.eu/

Accelerating Science and Innovation

Hybrid Clead to DERN - Helge Meinhard at CERN.ch

FRANCI

=CMS

CFRN Meyrin

21

ALICE