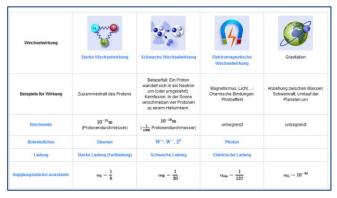
Basiskonzepte in Materialien zur Vermittlung von Teilchenphysik

Materialien für die Schule

1. Materialsammlung www.teilchenwelt.de/material


2013 mit Uni Würzburg

- Teilchensteckbriefe
 - 2 Varianten
 - Gelegenheit zu eigenen Aktivitäten
 - ordnen, diskutieren, vertraut werden
- ► Hintergrundinformationen und Arbeitsblätter
 - Vor- und Nachbereitung von Masterclasses
 - Methoden, Anwendungen, Kosmologie
 - 72 Seiten


2. LEIFI Physik Portal

www.leifiphysik.de/themenbereiche/ teilchenphysik

- 2014 mit Joachim Herz Stiftung
- über 40 Seiten Texte u. Animationen

3. Astro-/Teilchenphysik im Unterricht

Unterrichtsmaterialien 2014/15 mit Joachim Herz Stiftung

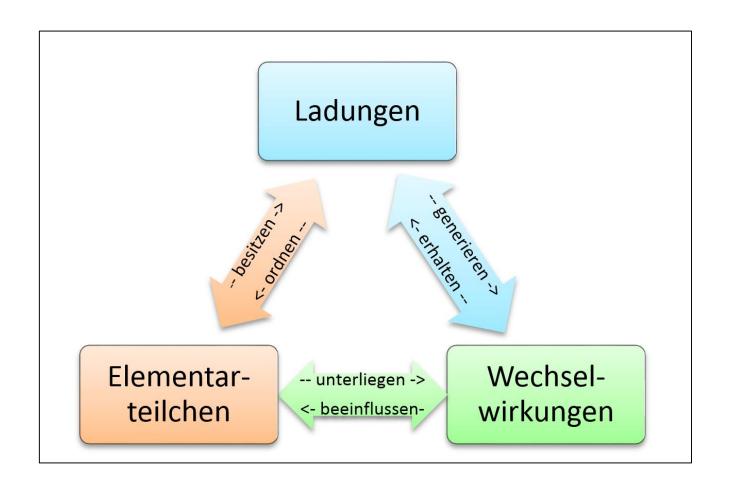
➤ Fachtexte, Aufgaben und Lösungen, Arbeitsblätter, Anknüpfungspunkte an den Lehrplan, Vorkenntnisse, Lernziele, methodische Hinweise, fachliche Hinweise

- Vier Bände
 - Teil 1: Wechselwirkungen, Ladungen und Teilchen
 - Teil 2: Forschungsmethoden der Teilchenphysik
 - Teil 3: Kosmische Strahlung (erschienen)
 - Teil 4: Mikrokurse (erschienen)
- Erscheinungsjahr: 2016
 - www.teilchenwelt.de/tp o. www.leifiphysik.de/tp
 - Online oder als Druckexemplar

Didaktische Ziele

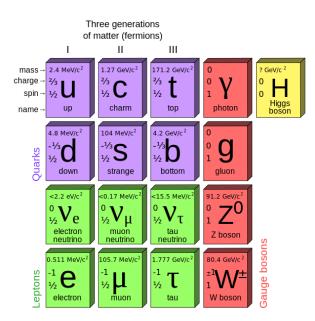
- ► Erklärungsvermögen der Physik
 - Wenige Prinzipien → erklären viele Phänomene
- Erarbeitung dieser Grundprinzipien
 - Vermeiden von Auswendiglernen
 - Einführung der essentiellen (auch theoretischen) Grundbegriffe
- ► Hilfe für Herausforderungen für Lehrkräfte
 - Anschluss an bisherige Begriffe
 - Änderungen der Vorstellungen / Modelle
 - Begrenzung der Mathematisierbarkeit
- Mehrwert
 - Erlernen von Einlassen auf völlig Neues
 - Einblick in "Physikalische Eleganz"
 - Faszination der Forschungsmethoden und Erkenntnisse

Band 1: Wechselwirkungen, Ladungen und Teilchen


- Ca. 100 Seiten Hintergrundinformationen für Lehrkräfte
- Einführung in das Standardmodell über das Konzept von Ladungen und Wechselwirkungen
- Spiralcurriculum, didaktische und fachliche Hinweise
- Aufgabenblätter online

Band 2: Forschungsmethoden

- Forschungsziele
- Beschleuniger
- Detektoren
- Zahlreiche Aufgaben


Band 1: Wechselwirkungen, Ladungen und Teilchen

▶ Die drei Basiskonzepte des Standardmodells

Fußball-Analogie

- Wie erklärt man jemandem etwas Unbekanntes? z.B. Fußball...
- ► Man beginnt nicht mit der Anzahl der Spieler oder gar deren Positionen, sondern mit den Grundregeln
- Spieler = Elementarteilchen
- Regeln = Wechselwirkungen, Erhaltungssätze,...
- Wieso also bei der Behandlung des Standardmodells damit beginnen??
 - Nur u,d,e sind für Aufbau der Materie nötig
 - Warum es gerade diese Teilchen gibt, kann nicht vorhergesagt werden (nicht verstanden!)
 - Das Standardmodell ist eine Theorie der Wechselwirkungen!

Basiskonzept Wechselwirkung

Basiskonzept Wechselwirkung

= Kraft + Umwandlung + Erzeugung + Vernichtung

Umfasst die Phänomene

Kraft (z.B. Coulomb-Kraft)

Umwandlung von Teilchen ineinander (z.B. β-Umwandlung)

Erzeugung von Materie+Antimaterie (z.B. Elektron+Positron)

Vernichtung in Botenteilchen (z.B. PET: 2 Photonen)

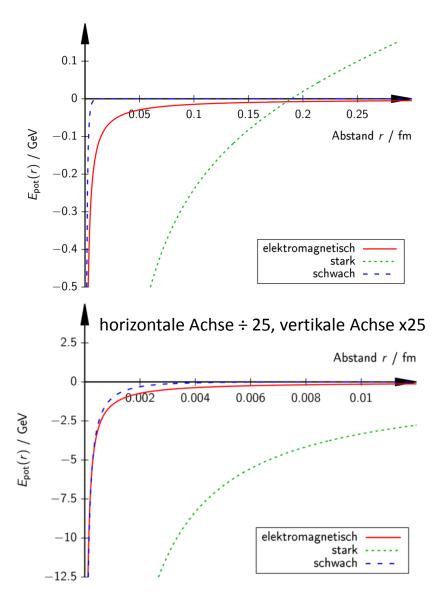
- Begriffe Kraft und Wechselwirkung sind klar zu trennen
- ► Kraft nur dort verwenden, wo wirklich Kraft (als Vektor) gemeint ist

Reduktion

 Alle Vorgänge / Phänomene lassen sich auf 4 fundamentale Wechselwirkungen zurückführen

Basiskonzept Wechselwirkung

= Kraft + Umwandlung + Erzeugung + Vernichtung

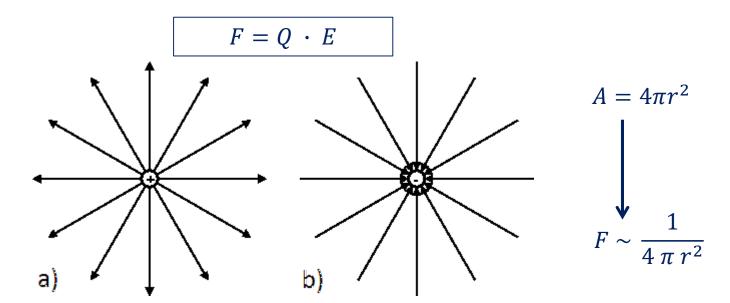

Hangabtriebskraft,
Wasserkraft,
Motorkraft,
Radiowellen,
Reibungskraft,
Muskelkraft,
Radioaktive Umwandlung,
Kernfusion

4 Fundamentale Wechselwirkungen

- Schrittweise Einführung der Notwendigkeit:
 - Bekannt: Gravitation und Elektromagnetismus
 - Stabilität der Kerne -> Starke WW
 - Kernumwandlungen -> Schwache WW

Suche nach Gemeinsamkeiten

- Potenzielle Energie außerhalb Kernen (~ fm)
 - alle unterschiedlich
 - Charakteristische Längen
 - elmagnetisch: keine
 - stark: 0,2 fm
 - schwach: 0,002 fm
- Potenzielle Energie für sehr kleine Abstände (<< fm)</p>
 - alle ähnlich
 - 1/r Verhalten
 - Stärkeparameter α
 - Ladungsprodukt


$$E_{Pot}(r) = \hbar \cdot c \cdot \alpha_{em} \cdot \frac{q_1 \cdot q_2}{r}$$

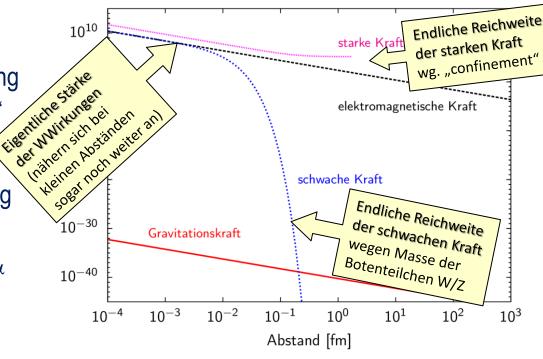
$$E_{Pot}(r) = \hbar \cdot c \cdot \alpha_s \cdot \frac{\vec{C}_1 \cdot \vec{C}_2}{r} + k \cdot r$$

$$E_{Pot}(r) = \hbar \cdot c \cdot \alpha_w \cdot \frac{I_1 \cdot I_2}{r} \cdot e^{\frac{-r}{\lambda_w}}$$

Geometrische Betrachtung

Klassische Physik: Feldlinien, hier elektromagnetische WW die Dichte der Feldlinien ist proportional zur Stärke der Kraft

- $\sim \frac{1}{r^2}$ ist Eigenschaft des 3-dim Raumes!
- In n-dim Raum würden Kräfte $\sim \frac{1}{r^{n-1}}$ abfallen


Wechsel des Beobachter-Standpunkts

Makroskopische Wahrnehmung

 Kleine Reichweiten "verstecken" WWirkungen im Alltag

Mikroskopische Wahrnehmung

- Alle Kräfte $F \sim \frac{1}{r^2}$
- Ähnliche Kopplungsparameter α
 - Ausnahme: Gravitation

Wechselwirkung	Kraftgesetz für $r o$ 0	Reichweite	Kopplungsparameter $lpha$
Gravitation	$F_G = \hbar \cdot c \cdot \alpha_{grav} \cdot \frac{-1}{r^2}$	unendlich	$\alpha_{grav} \approx \frac{1}{10^{38}}, \dots, \frac{1}{10^{45}}$
elektromagnetisch	$F_C = \hbar \cdot c \cdot \alpha_{em} \cdot \frac{q_1 \cdot q_2}{r^2}$	unendlich	$\alpha_{em} \approx \frac{1}{137}$
stark	$F_{s} = \hbar \cdot c \cdot \alpha_{s} \cdot \frac{\vec{c}_{1} \cdot \vec{c}_{2}}{r^{2}}$	2·10 ⁻¹⁵ m	$\alpha_s \approx \frac{1}{2}, \dots, \frac{1}{10}$
schwach	$F_w = \hbar \cdot c \cdot \alpha_w \cdot \frac{I_1 \cdot I_2}{r^2}$	2·10 ⁻¹⁸ m	$\alpha_w \approx \frac{1}{30}$

Offene Forschungsfragen

- Zusätzliche Dimensionen für Gravitation könnten die Kräfte "vereinigen"
 - Bild rechts: 2 "große" +2 "kleine" Dimensionen

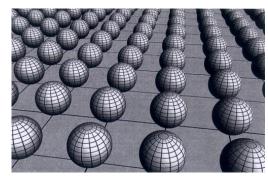
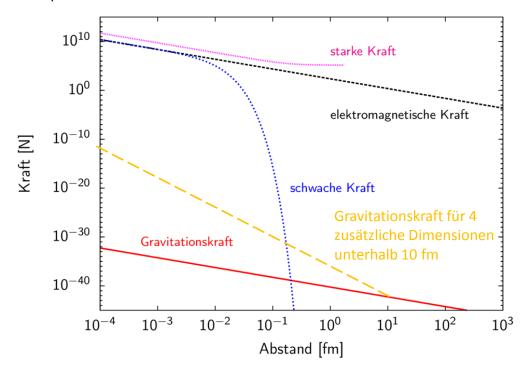



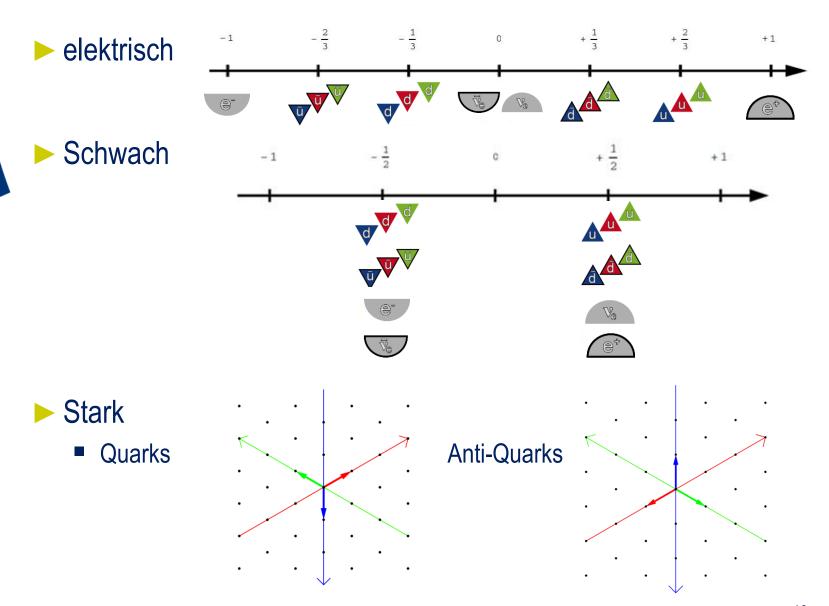
 Bild unten: 3 "große" + 4 "kleine" Dimensionen (offen nur für Feldlinien/Botenteilchen der Gravitation)

Basiskonzept Ladung

- ➤ Zu jeder Wechselwirkung existiert eine Ladung
- ► Ladung ist eine charakteristische Teilcheneigenschaft
- ► Bekannt:

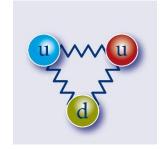
Elektrische Ladung

► Neu:


Schwache Ladung

Starke (Farb-)Ladung

elektrische Ladungszahl	q
schwache Ladungszahl	I
starker Farbladungsvektor	\vec{C}


Produkt zweier Ladungen kann positiv und negativ sein

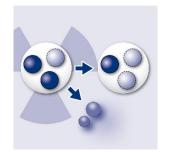
Übersichten (Ladungen der Bausteine)

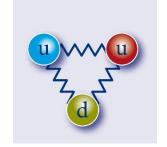
Alle drei Ladungen sind additiv

Beispiel: Ladungszahlen eines Protons p(u, u, d)

Elektrische Ladungszahl:

$$q_p = q_u + q_u + q_d = +\frac{2}{3} + \frac{2}{3} - \frac{1}{3} = +1$$


Schwache Ladungszahl:


$$I_p = I_u + I_u + I_d = +\frac{1}{2} + \frac{1}{2} - \frac{1}{2} = +\frac{1}{2}$$

Starker Farbladungsvektor:

$$\vec{C}_p = \vec{C}_u + \vec{C}_u + \vec{C}_d = + + + + = \vec{0}$$

- ► Alle drei Ladungen sind erhalten
 - Zusammen mit Energie- und Impulserhaltung erlaubt die Ladungserhaltung eine eindeutige Vorhersage, ob bestimmte Prozesse erlaubt oder unmöglich sind

Beispiel: β -Umwandlung $n \rightarrow p + e^- + \bar{\nu}_e$

Elektrische Ladungszahl:

$$0 \rightarrow +1 - 1 + 0 = 0$$

Schwache Ladungszahl:

$$-\frac{1}{2} \rightarrow +\frac{1}{2} - \frac{1}{2} - \frac{1}{2} = -\frac{1}{2}$$

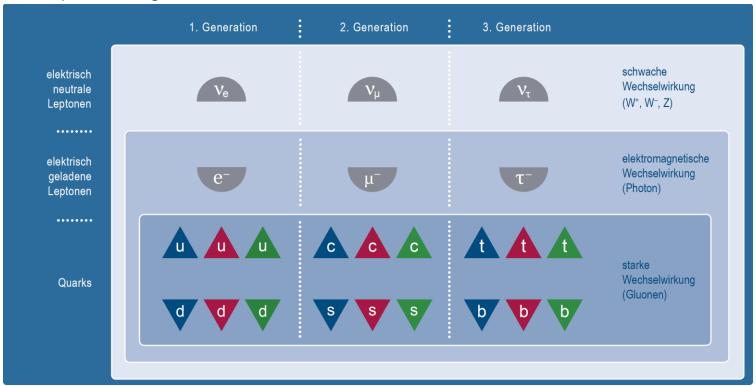
Starker Farbladungsvektor:

$$\vec{0} \rightarrow \vec{0} + \vec{0} + \vec{0} = \vec{0}$$

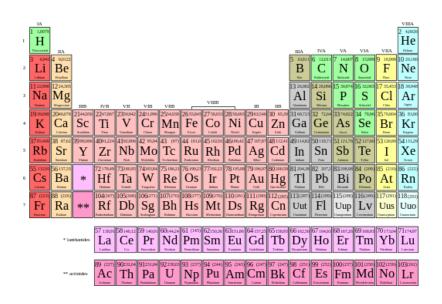
07.07.2016

Basiskonzept Elementarteilchen

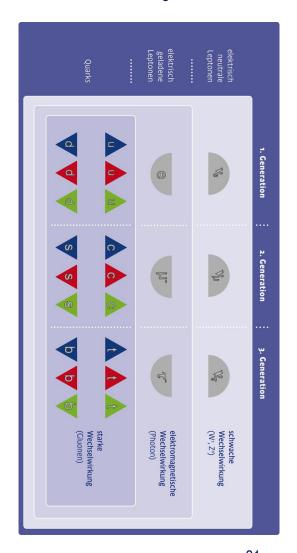
► Teilchen lassen sich nach ihren Ladungen ordnen



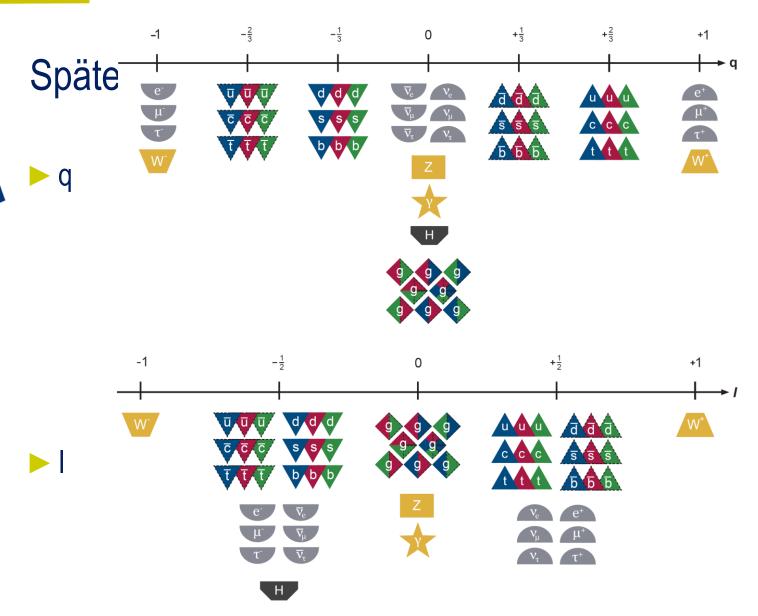
- ► Entdeckung weiterer Teilchen
- ausschließlich "schwere Kopien" der Up- und Down-Quarks sowie des Elektrons und des Elektron-Neutrinos
 - Von jedem der leichten Materieteilchen (u, d, e^-, v_e) gibt es je zwei Kopien, die größere Massen besitzen.


Anordnung von Teilchen in Generationen

- ► Entdeckung weiterer Teilchen
 - ausschließlich "schwere Kopien" der Up- und Down-Quarks sowie des Elektrons und des Elektron-Neutrinos
 - Von jedem der leichten Materieteilchen (u, d, e^-, v_e) gibt es je zwei Kopien, die größere Massen besitzen.



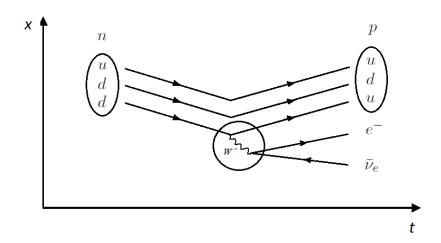
07.07.2016 KoLBi Arbeitstreffen, Dresden


Ordnungsschema: Analogie zum Periodensystem

- Gleiche Ladungen <-> Gleiche Eigenschaften ("Lepton Universalität")
- ➤ Welche Plätze gefüllt sind, ist nicht vorhergesagt
 → Experiment!
- Muster wiederholt sich 2x für größere Massen (Grund unbekannt!)

21

22

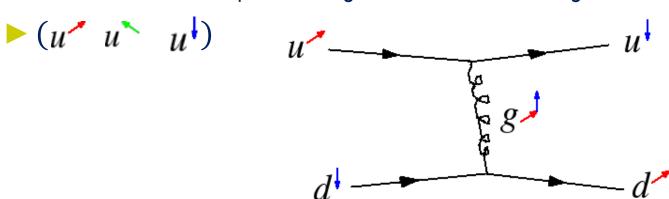

Teilchenumwandlungen als Schlüssel zur Ordnung

- Schwache Wechselwirkung
 - Nur bestimmte Paare von Teilchen beteiligt
 - Unterscheiden sich in schwacher Ladungszahl I und in elektrischer Ladungszahl q immer genau um Betrag 1
 - Dupletts der schwachen Wechselwirkung

$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{array}{l} I = +1/2 \ q = +2/3 \\ I = -1/2 \ q = -1/3 \end{array}$$

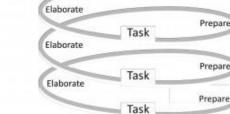
▶ Grund: Eigenschaften des W[±]

$$\begin{pmatrix} I \\ +1 \\ 0 \\ -1 \end{pmatrix} : \begin{pmatrix} W^+ \\ Z^0 \\ W^- \end{pmatrix}$$

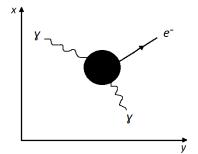


Teilchenumwandlungen als Schlüssel zur Ordnung

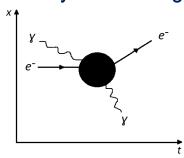
Starke Wechselwirkung

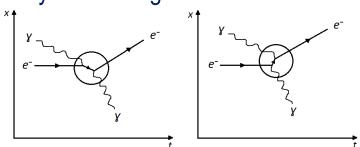

07.07.2016

- Durch Gluonen nur Änderung der Farbladung eines Teilchens
- Drei verschiedene Farbladungsvektoren für Quarks:
 Quarks bilden Tripletts bezüglich der starken Ladung



24


Konzept Spiralkurrikulum:


- ► Beispiel: Drei Stufen von Diagrammen
 - Stufe 1: x-y

Stufe 2: x-t ohne Feynman- Diagramme

Stufe 3: x-t mit Feynman- Diagrammen

Band 2: Forschungsmethoden

Beschleuniger als Mikroskop: Strukturauflösungen

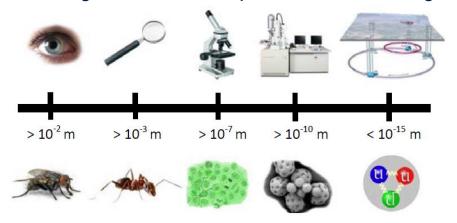
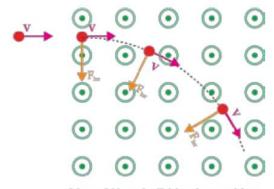
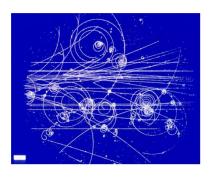



Abbildung 2: Messinstrumente und damit beobachtbare Objekte

Sehr gut anbindbar über E- und B-Felder

Magnetfeld aus der Zeichenebene gerichtet

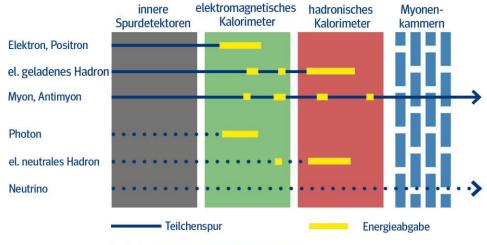
Abbildung 7: Wirkung der Lorentzkraft auf ein sich mit der Geschwindigkeit v bewegendes positiv elektrisch geladenes Teilchen in einem homogenen Magnetfeld (modifizierte Abbildung von http://www.leifiphysik.de/sites/default/files/medien/g8_2011_ph11_1_05_spezrelatheorie_auf.gif)


Detektoren

Bildgebend

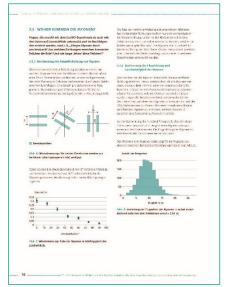
Elektronisch

z.B.: Nebelkammer, Blasenkammer

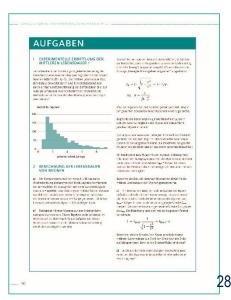

z.B: ATLAS-Detektor, Geigerzähler

sichtbare Teilchenspuren

- elektrische Signale
- Teilchenidentifikation durch Mustererkennung



Teilchen hinterlässt keine Spur


Band 3: Kosmische Strahlung

- 32 Seiten
- Fokus: Untersuchung von Myonen
- Hintergrundinfos für Lehrkräfte
- Fachtext für Schüler/innen
- Aktivitäten, Aufgaben und Lösungen

Nebelkammern (auch zum Selbstbau)

- ► Teilchen in unserer Umgebung
- Selbst messbar

Abb. 1 Blick in eine Nebelkammer (Quelle: Universität Göttingen, Markus Osterhoff)

Es lassen sich verschiedene Teilchenspuren identifizieren:

Abb. 2 Nebelkammerspuren von Alpha-Teilchen (links), Protonen (Mitte) und Elektronen (rechts). (Quelle: KIT)

Eigene Datenaufnahme und Auswertungen

Winkelverteilung

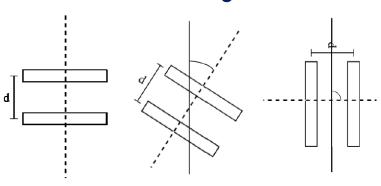


Abb. 5 Winkelmessung: Die beiden Detektoren werden zur (durchgezogene Linie) verkippt. Die gestrichelte Linie zeigt die Richgemessenen Myonen.

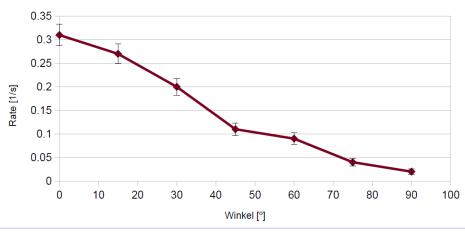


Abb. 6 Winkelmessung: Rate der Myonen in Abhängigkeit des Zenitwinkels.

Lebensdauer

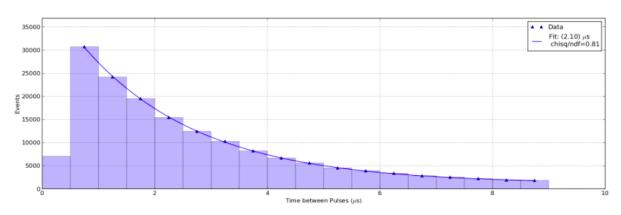


Abb. 10 Verteilung der Zeitunterschiede zwischen den zwei Pulsen mit Anzahl Myonen N(t) mit $\Delta t = t_e - t_0$.

Band 4: Mikrokurse

- 28 Seiten
- 4 Kurse
- Zeitbedarf 1-2 Unterrichtsstunden

Anknüpfung an klassische Lehrplanthemen, z.B. waagerechter Wurf

mit Anti-Wasserstoff

mit Aufgaben und Lösungen

Band 4: Mikrokurse

► Beispiel: Horizontaler Wurf von Anti-Wasserstoff Atomen

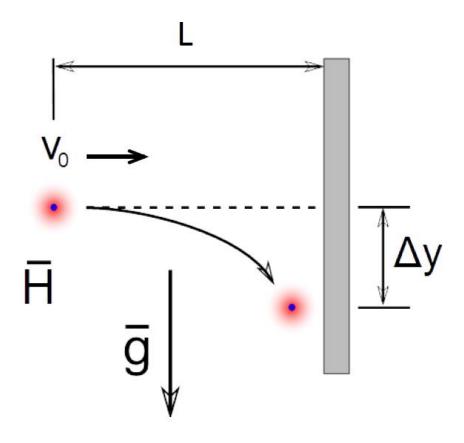


Abbildung 1: Schematisches Messprinzip des AEgIS Experiments (Abbildung modifiziert; Quelle: http://www.leifiphysik.de/themenbereiche/teilchenphysik/lb/musteraufgaben-aegis-experiment)

Unsere Wünsche / Ziele

- Vermittlung der *wirklichen* Forschungserkenntnisse
 - Übergreifende Zusammenhänge
 - Kein Auswendiglernen von Teilchen
- Standards der Begriffsbildung
 - Ladungen und Wechselwirkungen als zentrale Begriffe
 - Klärung von verbreiteten Irrtümern
- Anschlussfähigkeit in Schulen
 - Potenzielle Energien
 - Feldlinien, ...
- Möglichst breite Verwendung in Fortbildungen
 - **Erste Tests:** DESY/Zeuthen 26.2, Bensberg, NRW, 9.3., Dresden 12.3, CERN 21.-23.3
 - Ab 2017: Vorauss. viele Fortbildungen in D mit Hans-Riegel Stiftung