What would permille constraints on flavour observables bring us?

> Uli Haisch University of Oxford

Heavy Flavour physics at HL-LHC, 31 August 2016, CERN

Flavour Run I summary on a slide

$$\mu_{B_s \to \mu^+ \mu^-} = 0.78 \pm 0.18$$

Flavour: new-physics scale?

$$\Lambda \gtrsim \frac{v}{\sqrt{0.2}} \times \begin{cases} \frac{\sqrt{4\pi}}{g |V_{tb}^* V_{ts}|} & \simeq \end{cases} \begin{cases} 50 \,\text{TeV} \,, & \text{anarchic tree} \end{cases}$$

Flavour: new-physics scale?

$$\Lambda \gtrsim \frac{v}{\sqrt{0.2}} \times \begin{cases} \frac{\sqrt{4\pi}}{g |V_{tb}^* V_{ts}|} \\ 1 \end{cases} \simeq \begin{cases} 50 \,\text{TeV} \,, & \text{anarchic tree} \\ 0.6 \,\text{TeV} \,, & \text{MFV loop} \end{cases}$$

Estimating new-physics reach

$$\Lambda \gtrsim \frac{v}{\sqrt{\delta}} \times \begin{cases} \frac{\sqrt{4\pi}}{g |V_{tb}^* V_{ts}|} \\ 1 \end{cases} \simeq \begin{cases} \frac{25 \,\text{TeV}}{\sqrt{\delta}}, & \text{anarchic tree} \\ \frac{0.3 \,\text{TeV}}{\sqrt{\delta}}, & \text{MFV loop} \end{cases}$$

To predict future just need to know total relative uncertainty δ , that's all

Estimating new-physics reach

$$\Lambda \gtrsim \frac{v}{\sqrt{1\%}} \times \begin{cases} \frac{\sqrt{4\pi}}{g |V_{tb}^* V_{ts}|} \\ 1 \end{cases} \simeq \begin{cases} 700 \,\text{TeV} \,, \text{ anarchic tree} \\ 8.5 \,\text{TeV} \,, \text{ MFV loop} \end{cases}$$

If one takes δ to be a ‰, bounds on new-physics scale improve by a factor of around 15 compared to LHC Run I limits

How realistic is a %?

[more on experimental issues in talks by Marc & Patrick]

$B_s \rightarrow \mu^+ \mu^-$: current SM errors

Calculation of 3-loop QCD & 2-loop EW effects reduces perturbative uncertainties to 0.5%. Relative errors due to f_{Bs} & CKM both around 4%

[Bobeth et al., 1311.0903, 1311.1348; Hermann et al., 1311.1347]

$B_s \rightarrow \mu^+ \mu^-$: future SM errors

Improvements in lattice QCD calculations may reduce errors due to f_{Bs} & V_{cb} , leading to a future total uncertainty of 3%

[Blum et al., http://www.usqcd.org/documents/13flavor.pdf]

$B \rightarrow K^* \mu^+ \mu^-$: current SM errors

For P_5 in [4, 6] GeV² bin:

[Matias, Moriond EW 2015]

$B \rightarrow K^* \mu^+ \mu^-$: future SM errors

For P_5 in [4, 6] GeV² bin:

$$-0.82^{+0.01}_{-0.01} {}^{+0.02}_{-0.02} {}^{+0.03}_{-0.06} {}^{+0.06}_{-0.06} {}^{+0.07}_{-0.08}$$

Dominant uncertainty of O(10%) due to long-distance $c\bar{c}$ contribution cannot be calculated from first principles at present. Achieving % level precision in $B \rightarrow K^* \mu^+ \mu^- \&$ related modes would require breakthrough in our understanding of non-perturbative QCD. Maybe experiment can help by measuring long-distance $c\bar{c}$ effects

[see Patrick's talk & Petridis, Rare B Decays: Theory and Experiment 2016]

Flavour precision observables

Theoretical errors in some observables at % level or below. If measured with a comparable precision one could learn a lot about exotic tree-level effects, penguin pollution, lepton-flavour universality violating couplings, etc. B mixing: present & future

B mixing: present & future

[Charles et al., 1309.2293]

$$M_{12}^q = (M_{12}^q)_{\rm SM} \left(1 + h_q e^{2i\sigma_q}\right)$$

Flavour physics provides stringent indirect constraints in $m_{H^{\pm}}$ -tan β plane. Restrictions highly complementary to direct searches by ATLAS & CMS

Any precision measurement of $B_s \rightarrow \mu^+ \mu^-$ compatible with Run I 95% CL limit will significantly reduce allowed parameter space in m_{H^\pm} -tan β plane

Any precision measurement of $B_s \rightarrow \mu^+ \mu^-$ compatible with Run I 95% CL limit will significantly reduce allowed parameter space in m_{H^\pm} -tan β plane

Any precision measurement of $B_s \rightarrow \mu^+ \mu^-$ compatible with Run I 95% CL limit will significantly reduce allowed parameter space in m_{H^\pm} -tan β plane

Flavour constraints on MSSM

Since flavour observables involve typically a handful of MSSM parameters such as $m_{\tilde{t}}$, μ , A_t , etc. always more model-dependent than direct searches

$B_s \rightarrow \mu^+ \mu^-$ constraints on MSSM

[Altmannshofer et al., 1211.1976]

(a) $\mu = 1 \,\text{TeV}, \ A_t > 0$

(b)
$$\mu = 4 \,\text{TeV}, \ A_t > 0$$

- (c) $\mu = -1.5 \,\text{TeV}, A_t > 0$
- (d) $\mu = 1 \text{ TeV}, A_t < 0$

all squarks degenerate with 2 TeV, A_t such that $m_h = 125 \text{ GeV}$

excluded by LHC Run I $H, A \rightarrow \tau^+ \tau^-$ searches

Interference of Higgsino with SM contribution make $B_s \rightarrow \mu^+ \mu^-$ sensitive probe of μA_t . Currently $\mu A_t < 0$ stronger constrained as interference constructive

$B_s \rightarrow \mu^+ \mu^-$ constraints on MSSM

[Altmannshofer et al., 1211.1976]

(a) $\mu = 1 \text{ TeV}, A_t > 0$

all squarks degenerate with 2 TeV, A_t such that $m_h = 125 \,\text{GeV}$

- excluded by LHC Run I $H, A \to \tau^+ \tau^-$ searches
- parameters leading to $Br(B_s \to \mu^+ \mu^-) \in [3.2, 4.2] \cdot 10^{-9}$

However also choices with $\mu A_t > 0$ will be constrained significantly if a lower bound of Br(B_s $\rightarrow \mu^+\mu^-$) above half of SM prediction is established in future

$B_s \rightarrow \mu^+ \mu^- vs. B_d \rightarrow \mu^+ \mu^-$

– MFV

in scenarios with MFV deviations in $B_{s,d} \rightarrow \mu^+ \mu^-$ modes very constrained

$B_s \rightarrow \mu^+ \mu^- vs. B_d \rightarrow \mu^+ \mu^-$

At HL-LHC can rule out or provide precision test of MFV hypothesis

Future directions in $B \rightarrow K^* \mu^+ \mu^-$

Currently only real parts of Wilson coefficients constrained by global fits. Weak sensitivity to $Im(C_7^{(\prime)})$ from $B \rightarrow K^* \gamma$. Precise measurements of CP-violating observables in $B \rightarrow K^* \mu^+ \mu^-$ thus important goal of LHCb

Future directions in $B \rightarrow K^* \mu^+ \mu^-$ Prospects and current bounds on [Camalich & Jäger, 1412.3183]

Low-q² observables in $B \rightarrow K^* \mu^+ \mu^-/e^+e^-$ over clean & orthogonal tests of C₇. Together with $b \rightarrow s\gamma$ can probe full $C_7^{(\prime)}$ sector $S \simeq \frac{2 \operatorname{Im}(e^- \mu_2 \mu_3)}{|C_7|^2 + |C_7'|^2}$,

 P_1

Y production at LHCb

Precision measurement of dimuon spectrum for invariant masses in Υ region with only 3% of 8 TeV data set

Constraints on light pseudoscalars

Existing Y data provides best bound on 2HDM-II for $m_A \in [8.6, 11]$ GeV. With more data should be possible to improve & extend limits notably

[for other new-physics searches in dimuon sample see Patrick's talk & backup slides]

Constraining SM parameters

[http://pdg.lbl.gov/2015/reviews/rpp2015-rev-phys-constants.pdf]

fine structure constant	1/137.035999139(31)	$0.23\mathrm{ppb}$
electron mass	$0.5109989461(31){ m MeV}$	$6.2\mathrm{ppb}$
Fermi constant	$1.1663787(6) \cdot 10^{-5} \mathrm{GeV}^{-2}$	$500\mathrm{ppb}$
W-boson mass	$80.385(15){ m GeV}$	0.2%
strong coupling constant	0.1185(6)	0.5%
top-quark mass	$173.21(87){ m GeV}$	0.5%

Flavour physics obviously allows to constrain CKM elements. But what about other SM parameters like for instance α_s or m_t ?

Boxes & Z penguins

[see e.g. Buras, hep-ph/9806471]

Within SM, only two 1-loop topologies lead to a quadratic dependence on top mass

Top mass from $B_s \rightarrow \mu^+ \mu^-$

Br
$$(B_s \to \mu^+ \mu^-)_{\rm SM} = 3.65 \left(\frac{m_t^{\rm pole}}{173.1 \,{\rm GeV}}\right)^{3.06} (1 \pm 3\%) \cdot 10^{-9}$$

Br
$$(B_s \to \mu^+ \mu^-)_{exp} = 3.65 (1 \pm 4\%) \cdot 10^{-9}$$
 [LHCb, 1208.3355]

$$m_t^{\text{pole}} = (173.1 \pm 2.8) \,\text{GeV}$$

Indirect determination less stringent than direct measurements, but useful given theoretical ambiguities in extraction of m_t at colliders

[UH, Top at Twenty; Giudice et al., 1508.05332]

Constraining SM couplings

[LEPEWWG, hep-ex/0509008; CMS, 1303.3239; Falkowski et al., 1508.00581]

 Ze^+e^- couplings
 $(0.1\%)_L, (0.1\%)_R$
 $Zc\bar{c}$ couplings
 $(1.0\%)_L, (3.2\%)_R$
 $Zb\bar{b}$ couplings
 $(0.4\%)_L, (6.5\%)_R$
 $Zt\bar{t}$ couplings
 > 100\%

 WWZ coupling
 2.3\%

 $WW\gamma$ coupling
 3.4\%

Only couplings of W- & Z-bosons to leptons known with a precision below 1%. Which accuracy can flavour precision measurements achieve?

Ztīt couplings from $B_s \rightarrow \mu^+ \mu^-$

HL-LHC $B_s \rightarrow \mu^+ \mu^-$ measurements have potential to constrain Ztt couplings at few % level. Direct measurements only able to reach O(30%) precision

Zbb couplings from A_{FC}^{bb} at LHCb

[Gauld et al., 1505.02429]

LHCb has measured forward-central $b\bar{b}$ asymmetry with O(50%) precision using 1 fb⁻¹ of 7 TeV data, while SM prediction has uncertainty of O(15%)

Zbb couplings from A_{FC}^{bb} at LHCb

To reach LEP sensitivity need to achieve total relative error on forwardcentral bb asymmetry at % level. A challenge for both LHCb & theory

WWZ/Y couplings from flavour

As deviations in WWZ coupling logarithmically enhanced in $B_s \rightarrow \mu^+ \mu^-$ may get O(1%) precision at HL-LHC. Only O(10%) sensitivity in case of WWY

Conclusions

• To shed further light on existing flavour anomalies one needs measurements with higher statistics. LHC upgrade is able to deliver such precision measurements, which can lead to important interplay & complementarity with ATLAS, CMS, Belle II, NA62, etc.

[see Jernej's talk]

 Anomalies could be due to new flavour dynamics at relatively low scale & in such a case one can learn a lot about it at HL-LHC. Conversely if deviations disappear, LHC upgrade will significantly push up effective scale of flavour violation
Backup

Future of lattice calculations

Quantity	CKM	Present	2007 forecast	Present	2018
	element	expt. error	lattice error	lattice error	lattice error
f_K/f_{π}	$ V_{us} $	0.2%	0.5%	0.5%	0.15%
$f_+^{K\pi}(0)$	$ V_{us} $	0.2%	_	0.5%	0.2%
f_D	$ V_{cd} $	4.3%	5%	2%	< 1%
f_{D_s}	$ V_{cs} $	2.1%	5%	2%	< 1%
$D \to \pi \ell \nu$	$ V_{cd} $	2.6%	_	4.4%	2%
$D \to K \ell \nu$	$ V_{cs} $	1.1%	_	2.5%	1%
$B\to D^*\ell\nu$	$ V_{cb} $	1.3%	_	1.8%	< 1%
$B\to \pi\ell\nu$	$ V_{ub} $	4.1%	_	8.7%	2%
f_B	$ V_{ub} $	9%	_	2.5%	< 1%
ξ	$ V_{ts}/V_{td} $	0.4%	2-4%	4%	< 1%
ΔM_s	$ V_{ts}V_{tb} ^2$	0.24%	7 - 12%	11%	5%
B_K	$\operatorname{Im}(V_{td}^2)$	0.5%	3.5– $6%$	1.3%	< 1%

[Blum et al., http://www.usqcd.org/documents/13flavor.pdf]

Impact of theory improvement

NNLO QCD & NLO EW effects in $B_{s,d} \rightarrow \mu^+ \mu^-$ phenomenologically relevant

[Bobeth et al., 1311.0903, 1311.1348; Hermann et al., 1311.1347]

$B_d \rightarrow \mu^+ \mu^-$: current SM errors

Calculation of 3-loop QCD & 2-loop EW effects reduces perturbative uncertainties to 0.5%. Relative errors due to f_{Bd} & CKM are 4.5% & 6.9%

[Bobeth et al., 1311.0903, 1311.1348; Hermann et al., 1311.1347]

$B_d \rightarrow \mu^+ \mu^-$: future SM errors

Improvements in lattice QCD calculations may reduce errors due to f_{Bd} leading to a future total uncertainty of 7%

[Blum et al., http://www.usqcd.org/documents/13flavor.pdf]

CKM fit in 2013

CKM fit in few years

Lattice QCD improvements crucial to obtain such tight constraints

Lattice QCD improvements crucial to obtain such tight constraints

New-physics reach in B mixing

[Charles et al., 1309.2293]

Couplings	NP loop	Scales (in TeV) probed by		
Ouplings	order	B_d mixing	B_s mixing	
$ C_{ij} = V_{ti}V_{tj}^* $	tree level	17	19	
(CKM-like)	one loop	1.4	1.5	
$ C_{ij} = 1$	tree level	2×10^3	5×10^2	
(no hierarchy)	one loop	2×10^2	40	

Flavour constraints on 2HDM-II

Explaining $B \rightarrow D^* \tau v$ would require very small m_H & large tan β . No region in parameter space compatible with all measurements

$B \rightarrow D^{(*)} \tau \nu \text{ in } 2HDM-III$

Deviations in $B \rightarrow D\tau v \& B \rightarrow D^*\tau v$ can be explained, using coupling \mathcal{E}_{32}^{V} of left-handed top to right-handed charm quarks

MSSM: indirect probes

MSSM: Higgs properties

$$(\Delta M_h^2)_{\tilde{t}} \approx \frac{3G_F}{\sqrt{2}\pi^2} m_t^4 \left[-\ln\left(\frac{m_t^2}{m_{\tilde{t}}^2}\right) + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2}\right) \right]$$

$$\approx \begin{cases} \frac{m_t^2}{4} \left(\frac{1}{m_{\tilde{t}_1}^2} + \frac{1}{m_{\tilde{t}_2}^2} - \frac{X_t^2}{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2} \right) , & \tilde{q} = \tilde{t} \\ -\frac{m_b^2 X_b^2}{4m_{\tilde{b}_1}^2 m_{\tilde{b}_2}^2} , & \tilde{q} = \tilde{b} \end{cases}$$

$B_s \rightarrow \mu^+ \mu^-$ in MSSM

$$R_{\mu^{+}\mu^{-}} = \frac{\text{Br}(B_{s} \to \mu^{+}\mu^{-})_{\text{MSSM}}}{\text{Br}(B_{s} \to \mu^{+}\mu^{-})_{\text{SM}}} \simeq 1 - 13.2 C_{P} + 43.6 \left(C_{S}^{2} + C_{P}^{2}\right)$$

$$C_S \simeq -C_P$$

$$\frac{dR_{\mu^+\mu^-}}{dC_P} = -13.2 + 174.4 C_P = 0 \implies C_P \simeq 0.076$$

 $(R_{\mu^+\mu^-})_{\min} \simeq 0.5$

Probing $\mu \& M_{\tilde{Q}_3}$ with $B_s \rightarrow \mu^+ \mu^-$

[Altmannshofer et al., 1211.1976]

Stop sector probes

Stop sector probes

Indirect bounds on stop sector

Depending on choice of parameters in stop sector, combination of indirect measurements can provide limits on mass of lightest stop eigenstate of around 300 GeV

Indirect bounds on stop sector

Depending on choice of parameters in stop sector, combination of indirect measurements can provide limits on mass of lightest stop eigenstate of around 300 GeV

Indirect bounds on stop sector

But if constraint from Higgs-boson mass measurement is ignored (only applies in SUSY with minimal Higgs sector), no relevant modelindependent lower bound on stop mass can be found

Implications of $b \rightarrow s\mu^+\mu^-$ anomalies

Simplest new-physics explanations of $P'_5 \& R_K$ anomalies would lead to O(-20%) shifts in Br(B $\rightarrow X_s \mu^+ \mu^-$). Should be observable at Belle II

Implications of $b \rightarrow s\mu^+\mu^-$ anomalies

Zero of forward-backward asymmetry shifted by even O(35%). Belle II measurements of $B \rightarrow X_{s} \mu^{+} \mu^{-}$ crucial to shed light on P₅ & R_K anomalies

Low-q² observable in $b \rightarrow sl^+l^-$

$$S_{K^*\gamma} \simeq \frac{2 \operatorname{Im} \left(e^{-2i\beta} C_7 C_7' \right)}{|C_7|^2 + |C_7'|^2}$$

$$P_1 \simeq \frac{2 \operatorname{Re} \left(C_7 C_7' \right)}{|C_7|^2 + |C_7'|^2} \qquad P_3^{\operatorname{CP}} \simeq \frac{2 \operatorname{Im} \left(C_7 C_7' \right)}{|C_7|^2 + |C_7'|^2}$$

LHCb will reach theoretical limit by end of HL-LHC for P_1 but not for P_3^{CP} which is CP violating but does not require a strong phase

CP violation in $B \rightarrow K^* \mu^+ \mu^-$

 $\langle A_9 \rangle_{[1,6]} \simeq +0.12 \operatorname{Im}(C_7') + 0.04 \operatorname{Im}(C_{10}')$

Constraints from radiative decays

[Paul & Straub, 1608.02556]

Axions in dimuon spectrum

Can use dimuon spectrum as measured by LHCb to set interesting constraint on axion-top couplings in axion-portal models

[Freytsis et al., 0911.5355]

Dark photons at LHCb

[Ilten et al., 1603.08926]

LHCb will have sensitivity to large regions of unexplored dark photon A' parameter space via inclusive dimuon analysis, especially in [210, 520] MeV & [10, 40] GeV mass ranges

Light spin-0 states & flavour

Flavour-changing transitions provide another way to test light spin-0 states. Bounds depend however strongly on assumption on structure of couplings between spin-0 states & SM fermions

Light spin-0 states & flavour

[Dolan et al., 1412.5174]

Light spin-0 states & flavour

[Dolan et al., 1412.5174]

tt production at LHCb

tt production in forward direction advantages because qq + $g\bar{q}$ channels more important, leading to a larger tt asymmetry

Why tt production at LHCb?

In new-physics scenarios in which top production proceeds via t-channel exchange, cross section enhanced at large η

[in LHCb context see Kagan et al., 1103.3747]

Why tīt production at LHCb?

0.5

Even if no new physics hides in top sector, could make use of LHCb data by improving our understanding of gluon PDF

Single-lepton asymmetry

Single-lepton channel statistically more promising than dilepton mode. As background low, second signal should still be looked for
Single-lepton asymmetry

I-loop corrections to ρ

[cf. Veltman, Nucl. Phys. B123, 89 (1977)]

Dominant I-loop corrections due to top exchange & proportional to m_t^2 . In contrast, Higgs contribution scales as $g_1^2 \ln(m_h^2/m_Z^2)$

Top mass from EW fit

