

Kai-Feng Chen National Taiwan University Heavy Flavour Physics at HL-LHC, Aug 31st, 2016

CMS: OVERVIEW OF HF ACTIVITIES AND UPGRADE PLANS

CMS Objective in Flavour Physics

W Understand the underlying QCD processes

- Measure the spectrum of standard quarkonia production, polarization, and heavy flavor productions.
- Look for new exotic quarkonia states and new heavy baryons.

Test the Standard Model with high precision measurements

- Measurement of decay rates, lifetime, and CP phases of B hadrons.

A Look for new physics in the loop

- Rare decays:

 $B_{s,d}$ →µµ, B→K^{*}µµ, etc.

If these particles cannot be observed in the direct searches, this is the place one shall still look for!

CMS TRACKER SYSTEM

A full-silicon tracker is equipped:

- 3 barrel layers of $100 \times 150 \,\mu$ m pixels (66M in total).
- 10 barrel layers of $180 \,\mu m$ strips (9.6M in total).
- Excellent track momentum resolution at low *p*_T.
- Excellent vertex reconstruction and impact parameter resolution.

Muon Reconstruction

M CMS muon system:

- 3 different devices installed, with a large coverage up to $|\eta| < 2.4$.

inner track

andalone

yon track

0

×

Global

muon

- Good dimuon mass resolution
 - ~0.6-1.5% (depending on |y|).
- **M** Reconstruction algorithms:
 - standalone muon:
 - reconstructed in muon system only
 - global muon:
 - standalone muon \Rightarrow inner track
 - tracker muon:
 - inner track \Rightarrow muon system
- **M** Excellent muon identification
 - Fake rate $\leq 0.1\%$ for π, K ; $\leq 0.05\%$ for proton
 - MVA-based ID for $B \rightarrow \mu\mu$ analysis.

Triggers

The flavor physics analyses rely on displaced / non-displaced quarkonium (J/ ψ , ψ ' & Υ), B_(s), and non-resonant dimuon triggers.

- CMS trigger system:
 - Fast hardware trigger (L1)
 - Software trigger with full tracking & vertex reconstruction (HLT).
 - Specific triggers were developed for various analyses.
 - Trigger requirements tightened with the increased luminosity.
 - ~10% of CMS bandwidth is given to flavor physics.

FLAVOUR PHYSICS @ FUTURE CMS

High luminosity × Large production cross section = **ONE OF THE BIGGEST B HADRON DATA SETS ON EARTH**

A unique test bench for flavour physics predictions.
 Measurements which require huge statistics will have a significant boost, such as CP phase in B_s→J/ψφ, B_s→φφ, angular in B→K*µµ.
 Will allow to study (ultra) rare processes at a sensitivity level never attained, such as B→µµ, or lepton-flavor violating decays such as B→µτ, τ→µµµ.

 Utilizing additional tagging from top-pair or W events, new possibilities for precision measurements with b,c quarks or τ lepton are open.
 (e.g. PRL 110, 232002)

 $B_{s,d} \rightarrow \mu^+ \mu^- / \tau \rightarrow \mu \mu \mu / B_s \rightarrow \phi \phi$ as the benchmark analyses today!

THE CHARLENGE TOWARD HILLIGE

An event with **78** reconstructed vertices — expected to exceed doubled pile-up events at the running condition of HL-LHC.

Capability of operating at a very high pile-up of 140 interactions. The detector has to survive up to 3000 fb⁻¹, and to year 2035.

- Need to preserve a similar performance even at 140 PU, 3000 fb⁻¹ as the current detector as in Run-I/Run-II.
- Maintain current trigger acceptance for HL- LHC conditions, and preserve lowest possible trigger and analysis thresholds.

7

Scope of CMS Upgrade

Material budget for **Phase-I/Phase-II** tracker

New tracker system:

- Feature 4 pixel barrel layers and 5 disks on the endcaps with half of the material budget in the central region.
- Combined with a smaller silicon sensors pitch, the momentum resolution will be improved, and help to separate B⁰ and B_s signals.
- Enhanced L1 trigger:
 - Hardware track trigger at level-1 and maintaining low thresholds at HL-LHC luminosities.
 - Higher L1 trigger and software high-level trigger (HLT) accept rates [5-10 times to the phase-I].
 - Extended trigger capabilities for the muon system with improved coverage in the forward direction.

Scope of CMS Upgrade (cont.)

Phase-II muon

Forward muon system

- Improved Resistive Plate Chambers with 2 stations (RE3/1 and RE4/1) in each.
- Gas Electron Multipliers with 2 stations (GE1/1 and GE2/1) in each endcap; very forward ME-0 detector to provide coverage up to η = 3 or more.

Physics Target: $B \rightarrow \mu\mu$

An obv ous the form of the second se

Ref: D. M. Straub, arXiv: 1012.3893

Loop diagram + Suppressed SM + Theoretically clean =

An excellent place to look for new physics.

- ♦ Some of the new physics scenarios may boost the B→µµ decay rates by 10~20 times easily, for example:
 - **2HDM**: $\mathcal{B} \propto \tan^4 \beta \& m(H^+)$
 - **MSSM**: $\mathbb{B} \propto \tan^6 \beta$
- B_s/B_d ratio a stringent test of minimal flavor violation hypothesis.

Reference Analysis

 Event classification is carried out by Boosted Decision Tree (BDT).
 Branching fractions were extracted by unbined maximum likelihood fits in 12 categorized BDT bins.

Ref. CMS PRL 111 (2013) 101804 Channel Branching fraction $B_s \rightarrow \mu^+ \mu^ (3.0^{+1.0}_{-0.9}) \times 10^{-9}$ $B_d \rightarrow \mu^+ \mu^ <1.1 \times 10^{-9} @ 95\%$ CL

Reference Analysis

- Events are triggered by dimuon events at L1, and with mass/
 displaced vertex requirement at the HLT.
- MVA-based muon identification is introduced.
- Normalized to the reference channel $\mathbf{B}^+ \rightarrow \mathbf{J}/\psi(\rightarrow \mu^+\mu^-) \mathbf{K}^+$.
- Updates on background decay model and physics parameters presented in the CMS+LHCb combination Nature are incorporated.

Ref. Nature 522 (2015) 68

$$\begin{array}{l}
 B(B_{s,d} \rightarrow \mu^{+}\mu^{-}) = \frac{N_{S}}{N(B^{\pm} \rightarrow J/\psi K^{\pm})} \times B(B^{\pm} \rightarrow J/\psi K^{\pm}) \times \\
 A(B^{\pm}) & \frac{\varepsilon^{ana}(B^{\pm})}{\varepsilon^{ana}(B_{s})} & \frac{\varepsilon^{\mu}(B^{\pm})}{\varepsilon^{\mu}(B_{s})} & \frac{\varepsilon^{trig}(B^{\pm})}{\varepsilon^{trig}(B_{s})} & \frac{f_{u}}{f_{s}} \\
 An optimized analysis for \\
 B^{0} \rightarrow \mu\mu \text{ will provide better results.}
\end{array}$$
Then scale the analysis to LHC Run-2 and beyond!

Toward the Future: Analysis Assumptions

- Pseudo experiments are used to estimate the expected CMS performance in two different scenarios:
 - The Phase-1 scenario: corresponding to the expected performance of the CMS detector including LHC Run-II and Run-III, to an integrated luminosity of 300 fb⁻¹ at 14 TeV.
 - The Phase-2 upgrade scenario: corresponding to the expected performance of the CMS detector after the full Phase-2 upgrades and to a luminosity of 3000 fb⁻¹ at 14 TeV.
- GEANT4-based simulated samples are used to estimated the performance of trigger, resolution, and pile-up effect at the phase-2 running condition.
- Muon efficiency and identification are assumed to be the same as Run-I.
- <u>Standard Model branching fractions</u> are assumed in the study.

Toward the Future: L1 Trigger at Phase-2

Low-pT track-trigger-based algorithm as in Run-I is expected to be entirely feasible for Phase-2. Low-*p*_T di-muon L1 trigger algorithm exploiting the triggering capabilities of the upgraded CMS tracker is studied with full simulation with the Phase-2 scenario.

Invariant mass resolution for B → µµat L1 is estimated to be ~70 MeV.

 The rate of the L1 trigger is estimated from the minimum-bias simulation sample, and is equal to a few hundred Hz. This corresponds to a small fraction of the total available L1 bandwidth (~1 MHz).

Toward the Future: Performance Inputs

- ◆ The offline invariant mass resolution is estimated from B→µµ simulated samples implementing the full detector simulation of the Phase-I and Phase-II scenarios.
- The effects of the high pile-up have studied based on simulated samples as well.

Inputs	Phase-1	Phase-2
Offline barrel mass resolution	42 MeV	28 MeV
Trigger & muon ID	as Run-I	as Run-I
Efficiency drop due to PU (sig./bkg.)	as Run-I	-35%/-30%
Uncertainty: B+ normalization	5%	3%
Uncertainty: peaking background	20%	10%
Uncertainty: semi-leptonic B decays	25%	20%
Uncertainty: fs/fu	5%	5%

A comparison of isolation variable in **PU=0** and **PU=140** environment.

Inject into pseudo experiments for the sensitivity estimations.

Toward the Future: Results

L (fb ⁻¹)	δƁ(B _s →μ⁺μ⁻)	δƁ(B _d →μ⁺μ⁻)	B _d sign.	$\delta[\mathbb{B}(\mathbf{B}_d)/\mathbb{B}(\mathbf{B}_s)]$	
100	14%	63%	0.6–2.5σ	66%	
300	12%	41%	1.5–3.5σ	43%	Ref.
300 (barrel)	13%	48%	1.2–3.3σ	50%	CMS PAS
3000 (barrel)	11%	18%	5.6–8.0σ	21%	FIK-14-0

Search for LFV $\tau \rightarrow 3\mu$

- ★ $\tau \rightarrow 3\mu$: a lepton flavour violation process. Not found in the charged leptons yet, only in the neutrino sector.
- ✤ In SM it only proceeds with penguin loop and neutrino oscillation. The branching fraction is beyond the experimental reach B < 10⁻⁴⁰ (ref. EUJC 57, 13, 2008).
- However with SM extensions, the decay can be enhanced by many orders of magnitudes and can be probed by the collider experiments. e.g.
 10⁻⁸ (ref. JHEP 05, 013, 2007).
- * Best limits so far: Belle ($B < 2.1 \times 10^{-8}$), LHCb($B < 4.6 \times 10^{-8}$)

A good place to look for new physics!

Signal Acceptance

- Based on Pythia, the τ production can be as large as 1.8 × 10¹³ with 100 fb⁻¹ in Run-II. However...
 - 75% comes from D hadrons (mostly Ds),
 25% from B hadrons (including B→D+X→τ..)
 - Very low momentum muons and hence very small acceptance
 - Large QCD background: one or two genuine muons from b/c decay, randomly combined with fakes.
 - 0.02% comes from W and Z decay
 - Less challenging but insufficient number; but might be helpful in the future.

All tau $\rightarrow 3\mu = 100\%$ All 3μ with $|\eta| < 2.4 \sim 40\%$ All 3μ with $p>2.5 \sim 2\%$

Low Momentum Muon Reconstruction

♦ Efficiency for all 3μ can be reconstructed offline: ~0.6%

- effect of energy loss before reaching muon stations
- multiple scattering of muons out of the detector acceptance

Background Level Study

Istimated with 2012 data, with some simple selections:

- 3 tracker muons reconstructed with basic standard quality cuts
- Sum of charges to be ±1
- MVA analysis with several kinematic variables and muon qualities.
- Extrapolate to **100 fb⁻¹ at 13 TeV**
 - 12 signal events if $\mathbb{B} = 1 \times 10^{-8}$.
 - 210 background events (estimated from sideband).
 - Expected upper limit $\sim 3 \times 10^{-8}$.

Not for distribution CMS INTERNAL Work in progress

Potential Improvements from Phase-II Detector

Signal acceptance extension by ME0

If the muon detection is extended to η~3.0, the signal acceptance will gain by a factor of 2.9.

Low momentum muon reconstruction

- The offline tracker muon
 reconstruction is already efficient
 when muon p ≥ 3 GeV.
- GEM detectors might help to get back lower momentum muons.

Potential Improvements from Phase-II Detector

GEM help in endcap muon trigger

GE1/1 at the high η region, where τ→3µ signal mostly sits, may recover dramatically the L1 trigger efficiency for low momentum muons.

M Track trigger

- Tracking at L1 pushes down momentum of µ@L1, and improves momentum resolution significantly.
- Studies are required to find out how much it could help $\tau \rightarrow 3\mu$ search.

$B_s \rightarrow \phi \phi$ at Phase-II

♦ The Bs→φφ→4K decay:

- Processed by b → sss penguin transitions with a small decay branching fraction of ~1.91±0.31 × 10^{-5} , sensitive to the physics beyond the SM.
- Can be used to measure CP-violating phase though B_s mixing.
- Decaying to two vector mesons: admixture of CP-even and CP-odd states, a time-dependent angular analysis is required.
- Large statistics is required to perform the full analysis; a typical target at HL-LHC!

***** The final state kaons are rather soft:

- Limited acceptance and efficiency. Improved phase-II tracking is required! W^-

Performance Check w/ MC

- MC samples produced with CMS phase-II TP setup. Start with daughter kaons of p_T>2 GeV.
- **M** Kaon distributions at the <u>generator</u>:

Performance Check w/ MC

- - Loop over all the possible combinations.
 - Cut on track-pair dxy and dz, and the invariant mass of K⁺K⁻ pair.

$B_s \rightarrow \phi \phi$ Estimate

- Studies with full simulated MC samples with TP setup are carried out.
- Different PU conditions (up to 200 PU) have been checked.
- L1 track trigger study finds the following performance numbers for several different working points:

Working point	Efficiency	Rate	1)
Baseline	43%	29 kHz	
Tight	38%	14 kHz	2
+Pixel tracking	32%	11 kHz	

Still need to see what will be the "acceptable rate".

 Eff. falls below 30% if limit the rate below 10kHZ.

First offline analysis has been performed with good efficiency on the triggered sample.

Missing a baseline analysis with real data, more work required to produce a sensible extrapolation.

stribution

Summary

- The large data from LHC run-II and future operations will provide an excellent probe for the flavor physics.
- As a benchmark study, we estimate the CMS potential to trigger and reconstruct the $B_{s,d}$ →µ+µ− processes at future LHC and HL-LHC runs. The physics performance for the LFV τ→3µ and Bs→φφ decays has been examined as well.
- With the upgraded CMS detector, it will be possible to trigger and reconstruct the signal events even with the high pile-up running conditions at HL-LHC.
- The upcoming large data set will leads to high precision measurements and provide stringent tests of the Standard Model.

Next topic: what the 40 MHz track trigger bring us (Fabrizio)

Backup Slídes

The Physics: TOP FCNC

- Flavour-changing neutral current (FCNC) transitions are forbidden at tree level by the GIM mechanism in the Standard Model (SM).
- Mowever FCNC transitions are still possible in the SM in the higher orders via loop induced processes, but they are highly suppressed in the top decays.

Seeing TOP FCNC =

Discovery of New Physics!

Some extensions of the SM could enlarge the FCNC decay rates by including new particles (e.g. SUSY, Technic color, etc.).

Model	BF (t→Zq, γq)
SM	~10 ⁻¹²
SUSY	~10 ⁻⁶
2HDM	~10 ⁻⁷

 $\overline{c}, \overline{u}$

Toward the Future: TOP FCNC $t \rightarrow qZ$

- Large sets of MC samples (generated with Madgraph, simulated with DELPHES) are used in the extrapolation.
- The analysis selection is based on the existing CMS 8 TeV search.
- The systematic uncertainty is expected to be improved from 23% (8 TeV 20 fb⁻¹) down to 7% (300 fb⁻¹ and beyond), based on a better study of b-tagging performance and jet energy scale.

L (fb ⁻¹)	20 fb ⁻¹ @ 8 TeV	300 fb ⁻¹ @ 14 TeV	3000 fb ⁻¹ @ 14 TeV
Expected Bkg.	3.2	26.8	268
Bkg.	23%	7%	7%
Signal (B=0.1%)	6.4	57.8	578
Expected Limit	<0.10%	<0.027%	<0.010%

The sensitivity can be further improved with optimized analysis.

