
computing
Julia

A Fresh Approach to Technical Computing

Stefan Karpinski

u alj i

Center For Data Science

Numerical languages

What’s the deal with these?

‣ specialized for numerical work

Matlab
‣ everything is a complex matrix

R (and S before it)
‣ allow “NA” values everywhere

‣ data frame as basic data type

Mathematica
‣ symbolic rewriting everywhere

So… is Scheme numerical?

R6RS spec:

‣ 20% numerical

‣ (C99 is similar)

Are we doing it wrong?

Numerical languages are strangely diverse

General languages are strangely numerical

This doesn’t seem quite right.

Julia: a new approach

Stop making numbers special

All numeric types are user-defined

(Some of them are just defined for you)

The challenge

What does it take

to make numbers just another type

and still do real numerical work?

Numeric operations

Operations like +, *, [], \

‣ unusually polymorphic – often not normal functions

‣ behavior depends on all arguments not just first

‣ extensibility to new numeric types ⟺ the expression problem

We need multiple dispatch

‣ but if ops like Int+Int and Float64*Float64 are generic

‣ generic functions had better be blazingly fast (basically free)

Arrays

0xDEADBEEFT 0xDECEA5ED 0xCAFEBABE 0x0B5E55ED

-0.18417T

“hello”T

423T

2 + 2imT

[-0.18417, “hello”, 423, 2 + 2im]

[-0.18417, 0.85206, 0.46770, -0.39219]Any[-0.18417, 0.85206, 0.46770, -0.39219]

Arrays

0xDEADBEEFT 0xDECEA5ED 0xCAFEBABE 0x0B5E55ED

-0.184176T

0.852069T

0.467702T

-0.392197T

Staged programming

Allowing the programmer to generate code at 
various points in the compilation process

LLVM

JULIA

From Source to Machine Code

source text
parsing

ASTtokens
lexing

lowered AST

lowering

typed AST

inlining 
& type 

inference
LLVM IR

LLVM 
codegen

instructions

native 
codegen

LLVM IR

LLVM IR

LLVM IR

LLV
M IRvarious

optimization

passes

Hooking into compilation

lowering, inlining,

type inference

lexing, 
parsing

source 
text

AST
typed

AST

native 
code

code gen

macros JIT“generated functions”

Speed
tim

e
re

la
tiv

e
to

 C

Speed vs. Productivity
tim

e
re

la
tiv

e
to

 C

normalized lines of code

Julia

Demos & Examples

‣ Simple generic programming: nextfib

‣ Interactive visualization: Julia set

‣ Efficient custom types: Kakuro

‣ Multiple dispatch: notebook, promotion system

‣ Macros & metaprogramming: Horner & evalpoly

‣ Generated functions: nloops, Savitsky-Golay smoothing

