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Numerical languages

What’s the deal with these?


‣ specialized for numerical work


Matlab 
‣ everything is a complex matrix


R (and S before it) 
‣ allow “NA” values everywhere

‣ data frame as basic data type


Mathematica 
‣ symbolic rewriting everywhere



So… is Scheme numerical?

R6RS spec:


‣ 20% numerical 

‣ (C99 is similar)



Are we doing it wrong?

Numerical languages are strangely diverse


General languages are strangely numerical


This doesn’t seem quite right.



Julia: a new approach

Stop making numbers special


All numeric types are user-defined


(Some of them are just defined for you)



The challenge

What does it take 

to make numbers just another type


and still do real numerical work?



Numeric operations

Operations like +, *, [], \


‣ unusually polymorphic – often not normal functions


‣ behavior depends on all arguments not just first


‣ extensibility to new numeric types  ⟺  the expression problem


We need multiple dispatch


‣ but if ops like Int+Int and Float64*Float64 are generic


‣ generic functions had better be blazingly fast (basically free)
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Staged programming

Allowing the programmer to generate code at 
various points in the compilation process
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Hooking into compilation
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Speed vs. Productivity
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Demos & Examples

‣ Simple generic programming: nextfib


‣ Interactive visualization: Julia set 

‣ Efficient custom types: Kakuro 

‣ Multiple dispatch: notebook, promotion system


‣ Macros & metaprogramming: Horner & evalpoly


‣ Generated functions: nloops, Savitsky-Golay smoothing


