
Hadoop Tutorials

Daniel Lanza

Zbigniew Baranowski

Z

4 sessions

• Hadoop Foundations (today)

• Data Ingestion (20-July)

• Spark (3-Aug)

• Data Analytic tools and techniques (31-Aug)

Z

Hadoop Foundations

Z

Goals for today

• Introduction to Hadoop

• Explore and run reports on example data with
Apache Impala (SQL)

• Visualize the result with HUE

• Evaluate different data formats and
techniques to improve performance

Z

Hands-on setup

• 12 node virtualized cluster

– 8GB of RAM, 4 cores per node

– 20GB of SSD storage per node

• Access (haperf10[1-12].cern.ch)

– Everybody who subscribed should have the access

– Try: ssh haperf105 'hdfs dfs -ls‘

• List of commands and queries to be used
$> sh /afs/cern.ch/project/db/htutorials/tutorial_follow_up

Z

What is Hadoop?

• A framework for large scale data processing

– Data Volume (Terabytes, Zettabytes)

– Data Variety (Structured, Unstructured)

– Data Velocity (Stream processing)

6
Z

What is Hadoop? Architecture

• Data locality (shared nothing) – scales out

Interconnect network

MEMORY

CPU

Disks

MEMORY

CPU

Disks

MEMORY

CPU

Disks

MEMORY

CPU

Disks

MEMORY

CPU

Disks

MEMORY

CPU

Disks

Node 1 Node 2 Node 3 Node 4 Node 5 Node X

7
Z

What is Hadoop? Set of components

HDFS
Hadoop Distributed File System

H
B

as
e

N
o

Sq
l c

o
lu

m
n

ar
 s

to
re

YARN
Cluster resource manager

MapReduce

H
iv

e
SQ

L

P
ig

Sc
ri

p
ti

n
g

Fl
u

m
e

Lo
g

d
at

a
co

lle
ct

o
r

Sq
o

o
p

D
at

a
ex

ch
an

ge
 w

it
h

 R
D

B
M

S

O
o

zi
e

W
o

rk
fl

o
w

 m
an

ag
er

M
ah

o
u

t
M

ac
h

in
e

le
ar

n
in

g

Zo
o

ke
e

p
e

r
C

o
o

rd
in

at
io

n Im
p

al
a

SQ
L

Sp
ar

k
La

rg
e

sc
al

e
d

at
a

p
ro

ce
e

si
n

g

8

Z

Hadoop cluster architecture

• Master and slaves approach

Interconnect network

Node 1 Node 2 Node 3 Node 4 Node 5 Node X

HDFS
DataNode

Various
component
agents and

masters

YARN Node
Manager

HDFS
NameNode

HDFS
DataNode

Various
component
agents and

masters

YARN Node
Manager

YARN
ResourceManager

HDFS
DataNode

Various
component
agents and

demons

YARN Node
Manager

Hive
metastore

HDFS
DataNode

Various
component
agents and

demons

YARN Node
Manager

HDFS
DataNode

Various
component
agents and

demons

YARN Node
Manager

HDFS
DataNode

Various
component
agents and

demons

YARN Node
Manager

9
Z

HDFS in nutshell

• Distributed files system for Hadoop
– Fault tolerant -> multiple replicas of data spread

across a cluster

– Scalable -> design to deliver high throughputs,
sacrificing an access latency

– Files cannot be modified in place

• Architecture
– NameNode -> maintains and manages file system

metadata (in RAM)

– DataNodes -> store and manipulate the data (blocks)

Z

How HDFS stores the data

1.1GB

1) File to be stored on HDFS

256MB 256MB 256MB256MB
102
MB

2) Splitting into 256MB
blocks

DataNode1 DataNode2 DataNode3 DataNode4

256MB 256MB 256MB

256MB 256MB

256MB

256MB

256MB 256MB

256MB

256MB 256MB

102
MB

102
MB

102
MB

4) Blocks with their replicas (by default 3) are
distributed across Data Nodes

Z

3) Ask NameNode
where to put them

Interacting with HDFS

• Command line (examples)

• Programing bindings
– Java, Python, C++

hdfs dfs –ls #listing home dir
hdfs dfs –ls /user #listing user dir…
hdfs dfs –du –h /user #space used
hdfs dfs –mkdir newdir #creating dir
hdfs dfs –put myfile.csv . #storing a file on HDFS
hdfs dfs –get myfile.csv . #getting a file fr HDFS

Z More about HDFS: https://indico.cern.ch/event/404527/

Using Hadoop for data processing

• Get/produce the data

• Load data to Hadoop

• (optional) restructure it into optimized form

• Process the data (SQL, Scala, Java)

• Present/visualise the results

D

Using Hadoop for data processing

• Get/produce the data

• Load data to Hadoop

• (optional) restructure it into optimized form

• Process the data (SQL, Scala, Java)

• Present/visualise the results

D

Example data

• Source

– Meetups are: neighbours getting together to learn
something, do something, share something…

• Streaming API
– curl -s http://stream.meetup.com/2/rsvps

D

http://stream.meetup.com/2/rsvps

Using Hadoop for data processing

• Get/produce the data

• Load data to Hadoop

• (optional) restructure it into optimized form

• Process the data (SQL, Scala, Java)

• Present/visualise the results

D

Loading the data with HDFS command

• Store it locally and then move it to HDFS
– curl -s http://stream.meetup.com/2/rsvps -o meetup_data.json

• Ctrl + C

– hdfs dfs -moveFromLocal meetup_data.json meetup.json

• Directly

– curl -s http://stream.meetup.com/2/rsvps | head -10 |
hdfs dfs -put - meetup.json

• Showing

– hdfs dfs -cat meetup.json

D

Pre-proccesing required

• Convert JSON to Parquet

– SparkSQL

• Convert to CSV with Impala
– Create external table

– Create table as select

> spark-shell
scala> val meetup_data = sqlContext.read.json("meetup.json")
scala> val sel = meetup_data.select("*").withColumnRenamed("group","group_info")
scala> sel.saveAsParquetFile("meetup_parquet")

CREATE EXTERNAL TABLE meetup_parquet
LIKE PARQUETFILE '/user/<user_name>/meetup_parquet/<any_parquet_file>.gz.parquet'
STORED AS parquet
LOCATION '/user/<user_name>/meetup_parquet/';

CREATE TABLE meetup_csv
row format delimited fields terminated by '\t' ESCAPED BY '"' LINES TERMINATED BY '\n'
AS SELECT

... all interesting columns ...
FROM meetup_parquet;

D

Using Hadoop for data processing

• Produce the data

• Load data to Hadoop

• (optional) restructure it into optimized form

• Process the data (SQL, Scala, Java)

• Visualise the results

D

Why SQL?

• It is simple and powerful

– interactive, ad-hoc

– declarative data processing

– no need to compile

• Good for data exploration and reporting

• Structured data

– organization of the data in table abstractions

– optimized processing

D

Apache Impala

• MPP SQL query engine running on Apache Hadoop

• Low latency SQL queries on

– Files stored on HDFS , Apache HBase and Apache Kudu

• Faster than Map-Reduce (Hive)

• C++, no Java GC
Application

ODBC

HDFS

Query Planner

Query Coordinator

Query Executor

HDFS

Query Planner

Query Coordinator

Query Executor

HDFS

Query Planner

Query Coordinator

Query Executor

SQ
L

R
e

su
lt

D More about Impala and Hive: https://indico.cern.ch/event/434650/

Creating our own table
• Create table

• Populate table

• Create table as select
CREATE TABLE meetup_csv

AS SELECT * from meetup_csv;

CREATE TABLE meetup_csv
(event_id string, event_name string, ...);

CREATE TABLE meetup_csv
LIKE meetup_csv;

INSERT INTO meetup_csv
SELECT * FROM meetup_csv;

D

Querying the data
• Counting records (SQL Hello world!)

• Most interesting meetups

• Not interesting meetings (people did not accept)
SELECT event_name, response, count(*)

FROM meetup_csv
WHERE response='no'
GROUP BY event_name, response
ORDER BY 3 desc;

SELECT count(*) FROM meetup_csv;

SELECT DISTINCT event_name, group_name, venue_name
FROM meetup_csv

WHERE event_id IN
(SELECT event_id FROM meetup_csv
GROUP BY event_id ORDER BY count(*) desc
LIMIT 10);

D

Using Hadoop for data processing

• Produce the data

• Load data to Hadoop

• (optional) restructure it into optimized form

• Process the data (SQL, Scala, Java)

• Visualise the results

D

HUE – Hadoop User Experience

• Web interface to main Hadoop components
– HDFS, Hive, Impala, Sqoop, Oozie, Solr etc.

• HDFS: FS browser, permission and ACLs
configuration, file uploading

• SQL: query execution, results visualisation

• http://haperf100.cern.ch:8888/

D

How to check a profile of the
execution

• Impala has build in query profile feature

• See execution plan

• Per machine or cluster average
– How much data was read from HDFS

– How much CPU time was spent on certain operations

– etc.

$ impala-shell
> SELECT event_name, event_url, member_name, venue_name, venue_lat,

venue_lon FROM meetup_csv
WHERE time BETWEEN unix_timestamp("2016-07-06 10:30:00")*1000

AND unix_timestamp("2016-07-06 12:00:00")*1000;
> profile;

Z

profile
• Execution plan profile

• Details for HDFS SCAN fragment (averaged)

Can we optimize the execution?

• Reading all the data: 159.57MB

• Data are stored as text -> not optimally!

• Binary format?

• Apache Avro

Z

Apache Avro data file

• Fast, binary serialization format

• Internal schema with multiple data types
including nested ones

– scalars, arrays, maps, structs, etc

• Schema in JSON

Z

{
"type": "record",
"name": "test",
"fields" : [
{"name": "a", "type":

"long"},
{"name": "b", "type":

"string"}
]

}

Record {a=27, b=‘foo’}

Encoded (hex): 36 06 66 6f 6f

long – variable-
length zigzag

String
length

String chars

Creating Avro table in Impala

• Creating table

• Populating the table

• Data size in Avro: 76MB (in CSV was 159MB)

• Run the queries
– ~1.4s (in CSV was ~2s)

CREATE TABLE meetup_avro
LIKE meetup_csv
STORED AS avro;

INSERT INTO meetup_avro
SELECT * FROM meetup_csv;

Z

Can we do it better? (2)

• Still reading more (all) data than needed!

• What if data is stored in such a way that only a
subset needs to be read

• Use partitioning!

Z

Data partitioning (horizontal)

• Group data by certain attribute(s) in separate
directories

• Will reduce amount of data to be read
Day Month Year No	of	customers

10 Aug 2013 17

11 Aug 2013 15

12 Aug 2013 21

2 Dec 2014 30

3 Dec 2014 34

4 Dec 2014 31

17 Feb 2015 12

18 Feb 2015 16

Aug 2013

Dec 2014

Feb 2015

/user/zaza/mydata/Aug2013/data

/user/zaza/mydata/Dec2014/data

/user/zaza/mydata/Dec2015/dataZ

Partitioning the data with Impala

• Create a new partitioning table
CREATE TABLE meetup_avro_part

(event_id string, event_name string,
time bigint, event_url string,
group_id bigint, group_name string,
group_city string, group_country string,
group_lat double, group_lon double,
group_state string, group_urlname string,
guests bigint, member_id bigint,
member_name string, photo string,
mtime bigint, response string,
rsvp_id bigint, venue_id bigint,
venue_name string, venue_lat double,
venue_lon double)
PARTITIONED BY (year INT, month INT, day INT)
STORED AS avro;

Z

Partitioning the data with Impala
• Populating partitioning table

– the data needs to be reload

– Impala will create automatically directories like:

• Filter predicates has to be specified on partitioning columns
– where year=2016 and month=7 and day=6

INSERT INTO meetup_avro_part
PARTITION (year, month, day)
SELECT *,

year(from_unixtime(cast(time/1000 as bigint))),
month(from_unixtime(cast(time/1000 as bigint))),
day(from_unixtime(cast(time/1000 as bigint)))

FROM meetup_avro;

/user/zaza/mydata/year=2016/month=7/day=6/data

Z

Can we do even better? (3)

• We are interested in reading certain columns

• But we are always reading entire row data

• Solution?

• Columnar store

Col1 Col2 Col3 Col4

D

Parquet data format

• Based on Google “Dremel”
Columnar storage

Pushdowns

D

Slicing and dicing

• Horizontal and vertical partitioning – for
efficient data processing

Col1 Col2 Col3 Col4

Col1 Col2 Col3 Col4

Col1 Col2 Col3 Col4

D

Horizontal and vertical partitioning

• Create a new table

CREATE TABLE meetup_parquet_part
(event_id string, event_name string,
time bigint, event_url string,
group_id bigint, group_name string,
group_city string, group_country string,
group_lat double, group_lon double,
group_state string, group_urlname string,
guests bigint, member_id bigint,
member_name string, photo string,
mtime bigint, response string,
rsvp_id bigint, venue_id bigint,
venue_name string, venue_lat double,
venue_lon double)
PARTITIONED BY (year INT, month INT, day INT)
STORED AS parquet;

D

Horizontal and vertical partitioning

• Populating partitioning table

– the data needs to be reload

– Size 42MB

• Run queries

INSERT INTO meetup_parquet_part
PARTITION (year, month, day)
SELECT *,

year(from_unixtime(cast(time/1000 as bigint))),
month(from_unixtime(cast(time/1000 as bigint))),
day(from_unixtime(cast(time/1000 as bigint)))

FROM meetup_avro;

D

Can we query faster? (4)

• Use compression?
– Snappy – lightweight with decent compression rate

– Gzip – to save more space but affect performance

• Using an index?

• In Hadoop there is a ‘format’ that has an index

-> HBase

Z

HBase in a nutshell

• HBase is a key-value store on top of HDFS
– horizontal (regions) + vertical (col. families)

partitioning
– row key values are indexed within regions
– data typefree – data stored in bytes arrays

• Fast random data access by key
• Stored data can be modified (updated, deleted)
• Has multiple bindings

– SQL (Impala/Hive, Phoenix), Java, Python

• Very good for massive concurrent random data
access

• ..but not good for big data sequential processing!
Z

HBase: master-slaves architecture

• HBase master
– assigns table regions/partitions to region servers

– maintains metadata and table schemas

• HBase region servers
– servers clients requests (reading and writing)

– maintain and store the region data on HDFS

– writes WAL in order to recover the data after a
failure

– performs region splitting when needed

HBase table data organisation

More about HBase: https://indico.cern.ch/event/439742/

https://indico.cern.ch/event/439742/

Creating and loading data to an HBase table with SQL

• Creating HBase table (with 4 column families)

• Mapping Hive/Impala table to HBase table

• Populating the table (key=event_time,even_if,modification time)

$ hbase shell
> create 'meetup_<username>', 'event', 'group', 'member', 'venue'
> quit

$ hive
> CREATE EXTERNAL TABLE meetup_hbase

(key string, event_id string, event_name string, time bigint, ...)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler’
WITH SERDEPROPERTIES ("hbase.columns.mapping" =

":key,event:event_name,event:time,event:event_url,group:group_id,group:gro
up_name,group:group_city,group:group_country,group:group_lat,… ")

TBLPROPERTIES("hbase.table.name" = "meetup_<username>");

$ hive
> INSERT INTO meetup_hbase SELECT concat(

cast(nvl(time, 0) as string), event_id, cast(mtime as string)), *
FROM meetup_csv;Z

Query data by key on HBase through Impala/Hive

• Run queries
$ impala-shell

> SELECT *
FROM meetup_hbase
WHERE key BETWEEN "1462060800" AND "1467331200";

> SELECT *
FROM meetup_hbase
WHERE key BETWEEN

cast(unix_timestamp("2016-07-06 10:30:00") as string)
AND cast(unix_timestamp("2016-07-06 12:00:00") as string);

> SELECT * FROM meetup_hbase
WHERE key = '14679936000002319268721467404430663'

Z

Formats summary

159
76 76 42

770

0

200

400

600

800

1000

CSV Avro Avro
partitioned

Parquet
partitioned

HBase

data size (MB)

1.9

1.4

0.87 0.8
0.5

0

0.5

1

1.5

2

CSV Avro Avro
partitioned

Parquet
partitioned

HBase

query time (s)

• Hands-on results

• Production data

When to use what?

• Partitioning -> always when possible
• Fast full data (all columns) processing -> Avro
• Fast analytics on subset of columns -> Parquet
• Only when predicates on the same key columns -> HBase

(data deduplication, low latency, parallel access)

• Compression in order to further reduce the data volume
– without sacrificing performance -> Snappy
– when data access is sporadic -> Gzip/Bzip or derived

Z

Summary

• Hadoop is a framework for distributed data
processing
– designed to scale out

– optimized for sequential data processing

– HDFS is the core of the system

– many components with multiple functionalities

• You do not have to be a Java guru to start using it

• Choosing data format, partitioning scheme is a
key to achieve good performance and optimal
resource utilisation

Z

Questions & feedback

it-dep-db-sas@cern.ch

