Hadoop Tutorials

Daniel Lanza

Zbigniew Baranowski

4 sessions

Hadoop Foundations (today)

Data Ingestion (20-July)

Spark (3-Aug)

Data Analytic tools and techniques (31-Aug)

Hadoop Foundations

Goals for today

Introduction to Hadoop

Explore and run reports on example data with
Apache Impala (SQL)

Visualize the result with HUE

Evaluate different data formats and
techniques to improve performance

Hands-on setup

e 12 node virtualized cluster

— 8GB of RAM, 4 cores per node
— 20GB of SSD storage per node

* Access (haperfl10[1-12].cern.ch)

— Everybody who subscribed should have the access
— Try: ssh haperfl105 'hdfs dfs -Is’

e List of commands and queries to be used
S> sh /afs/cern.ch/project/db/htutorials/tutorial_follow up

What is Hadoop?

* A framework for large scale data processing
— Data Volume (Terabytes, Zettabytes)
— Data Variety (Structured, Unstructured)

— Data Velocity (Stream processing)

What is Hadoop? Architecture

e Data locality (shared nothing) — scales out

mwork
4+ + * + %

CPU CPU CPU CPU CPU CPU

MEMORY MEMORY MEMORY MEMORY MEMORY MEMORY

9401S Jeuwn|od |bSON

asegH

10S
9AIH

Sunduos
81d

SINGQY Yyum adueyoxs ereq

CO0lo0 doobs

Jadeuew MO[JJ0M

OO0 21200

3uluiea| aulyoep

Cluster resource manager

INoyen 5

3uisaaooud ejep ajeds adle] m A

(]

M%GQm. yeds || L =
©

o

_~ 10S 2
. ¥s ejedwij b
2

) Q

& 10129||02 e1ep 507 =
mﬁ n k:

| Wwn|4 2

What is Hadoop? Set of components

” uolleulptoo)
w m 19d23)007

Hadoop cluster architecture

* Master and slaves approach

Interconnect network

U R D .

HDFS YARN Hive
NameNode ResourceManager metastore

| 11 I 1 |

| 11 11 |

| | 11 I 1 |

: : : _ : : . : : Various : : Various : : Various :
Various Various Various component component component

I component 1! component 11 component I agents and 11 agents and 11 agents and I

I agents and I agents and 11 agents and 'l demons 1 I demons | 1 demons |

I masters |1 masters 11 demons I 1 11 (I 1

I 11 (I 11 11 11 |

I 11 11 (| 11 (. |

L ' | ' | ' L ' L ' L '
YARN Node YARN Node YARN Node YARN Node YARN Node YARN Node

Manager Manager Manager Manager
HDFS HDFS HDFS HDFS

Manager Manager
HDFS HDFS

DataNode DataNode DataNode DataNode DataNode DataNode

Node 1 Node 2 Node 3 Node 4 Node 5 Node X

HDFS in nutshell

* Distributed files system for Hadoop

— Fault tolerant -> multiple replicas of data spread
across a cluster

— Scalable -> design to deliver high throughputs,
sacrificing an access latency

— Files cannot be modified in place
* Architecture

— NameNode -> maintains and manages file system
metadata (in RAM)

— DataNodes -> store and manipulate the data (blocks)

How HDFS stores the data

1) File to be stored on HDFS

SV EME ! 2) Splitting into 256MB
VI blocks

3) Ask NameNode
4) Blocks with their replicas (by default 3) are where to put them

distributed across Data Nodes

N N N 2

W m

MB

a
_ RN """ HEEN " VAN y

Z DataNodel DataNode?2 DataNode3 DataNode4

Interacting with HDFS

e Command line (examples)

hdfs
hdfs
hdfs
hdfs
hdfs
hdfs

dfs -1s

dfs -1s /user

dfs -du -h /user
dfs -mkdir newdir

dfs -put myfile.csv .
dfs -get myfile.csv .

#listing home dir
#listing user dir..
#space used

#creating dir

#storing a file on HDFS
#getting a file fr HDFS

* Programing bindings

— Java, Python, C++

More about HDFS: https://indico.cern.ch/event/404527/

Using Hadoop for data processing

Get/produce the data

Load data to Hadoop

(optional) restructure it into optimized form
Process the data (SQL, Scala, Java)
Present/visualise the results

Using Hadoop for data processing

Get/produce the data

Load data to Hadoop

(optional) restructure it into optimized form
Process the data (SQL, Scala, Java)
Present/visualise the results

Example data

e Source

— Meetups are: neighbours getting together to learn
something, do something, share something...

* Streaming API

— curl -s http://stream.meetup.com/2/rsvps

http://stream.meetup.com/2/rsvps

Using Hadoop for data processing

Get/produce the data

Load data to Hadoop

(optional) restructure it into optimized form
Process the data (SQL, Scala, Java)
Present/visualise the results

Loading the data with HDFS command

e Store it locally and then move it to HDFS

— curl -s http://stream.meetup.com/2/rsvps -0 meetup_data.json
e Ctrl+C

— hdfs dfs -moveFromLocal meetup_data.json meetup.json

e Directly

— curl -s http://stream.meetup.com/2/rsvps | head -10 |
hdfs dfs -put - meetup.json

* Showing

— hdfs dfs -cat meetup.json

Pre-proccesing required

* Convert JSON to Parquet
— SparkSQL

> spark-shell
scala> val meetup_data = sqlContext.read.json("meetup.json")
scala> val sel = meetup_data.select("*").withColumnRenamed("group","group_info")

scala> sel.saveAsParquetFile("meetup_parquet")

* Convert to CSV with Impala

— Create external table

CREATE EXTERNAL TABLE meetup_parquet
LIKE PARQUETFILE '/user/<user_name>/meetup_parquet/<any parquet_file>.gz.parquet'

STORED AS parquet
LOCATION '/user/<user_name>/meetup_parquet/';

— Create table as select

CREATE TABLE meetup_csv
row format delimited fields terminated by '\t' ESCAPED BY '"' LINES TERMINATED BY '\n'

AS SELECT
. all interesting columns ...

FROM meetup_parquet;

Using Hadoop for data processing

Produce the data

Load data to Hadoop

(optional) restructure it into optimized form
Process the data (SQL, Scala, Java)
Visualise the results

Why SQL?

* |tis simple and powerful
— interactive, ad-hoc
— declarative data processing
— no need to compile

* Good for data exploration and reporting
e Structured data

— organization of the data in table abstractions
— optimized processing

Apache Impala

* MPP SQL query engine running on Apache Hadoop \S

* Low latency SQL queries on
— Files stored on HDFS, Apache HBase and Apache Kudu

e Faster than Map-Reduce (Hive)

e C++, noJava GC -
Application

| |
I = N I
EOE O

More about Impala and Hive: https://indico.cern.ch/event/434650/

Creating our own table

e Create table

CREATE TABLE meetup_ csv
(event_id string, event _name string, ...);

CREATE TABLE meetup_ csv
LIKE meetup csv,

* Populate table

INSERT INTO meetup_csv
SELECT * FROM meetup csv;

 Create table as select

CREATE TABLE meetup _csv
AS SELECT * from meetup csv;

Querying the data

* Counting records (SQL Hello world!)
SELECT count(*) FROM meetup csv;

* Most interesting meetups

SELECT DISTINCT event _name, group_ _name, venue_name

FROM meetup csv
WHERE event _id IN
(SELECT event_id FROM meetup_csv
GROUP BY event_id ORDER BY count(*) desc

LIMIT 10);

* Not interesting meetings (people did not accept)

SELECT event_name, response, count(*)
FROM meetup csv
WHERE response='no’
GROUP BY event name, response
ORDER BY 3 desc;

Using Hadoop for data processing

Produce the data

Load data to Hadoop

(optional) restructure it into optimized form
Process the data (SQL, Scala, Java)

Visualise the results

HUE — Hadoop User Experience

Web interface to main Hadoop components
— HDFS, Hive, Impala, Sqoop, Oozie, Solr etc.

HDFS: FS browser, permission and ACLs
configuration, file uploading

SQL: query execution, results visualisation

http://haperf100.cern.ch:8888/

How to check a profile of the
execution

* Impala has build in query profile feature

$ impala-shell
> SELECT event_name, event_url, member_name, venue_name, venue_lat,
venue_lon FROM meetup csv
WHERE time BETWEEN unix_timestamp("2016-07-06 10:30:00")*1000
AND unix_timestamp("2016-07-06 12:00:00")*1000;
> profile;

* See execution plan

* Per machine or cluster average
— How much data was read from HDFS
— How much CPU time was spent on certain operations
— etc.

profile
* Execution plan profile

e Details for HDFS SCAN fragment (averaged)

Can we optimize the execution?

Reading all the data: 159.57MB
Data are stored as text -> not optimally!

Binary format?
Apache Avro

Apache Avro data file S5

* Fast, binary serialization format

* Internal schema with multiple data types
including nested ones

— scalars, arrays, maps, structs, etc

e Schema in JSON
{

"type": "record",
"name": "test",
"fields" : [

wongry T ee Encoded (hex): 36,06,66 6f 6f,

{llnamell:lle’ "type
"string"} [4 ¥]
Iong variable- String
y] length zigzag length String chars

Record {a=27, b="foo’}

Creating Avro table in Impala

Creating table

CREATE TABLE meetup_avro
LIKE meetup csv
STORED AS avro;

Populating the table

INSERT INTO meetup avro
SELECT * FROM meetup csv;

Data size in Avro: 76 MB (in CSV was 159MB)

Run the queries
— ~1.4s (in CSV was ~25s)

Can we do it better? (2)

e Still reading more (all) data than needed!

 What if data is stored in such a way that only a
subset needs to be read

* Use partitioning!

Data partitioning (horizontal)

* Group data by certain attribute(s) in separate
directories

e Will reduce amount of data to be read

-

/user/zaza/mydata/Aug2013/data

Day Month Year No®fliustomers
10 Aug 2013 17
11 Aug 2013 15
12 Aug 2013 21
2 Dec 2014 30
3 Dec 2014 34
4 Dec 2014 31
17 Feb 2015 12
18 Feb 2015 16

/user/zaza/mydata/Dec2014/data

\

/user/zaza/mvdata/Dec

15/data

Partitioning the data with Impala

* Create a new partitioning table

CREATE TABLE meetup _avro_part
(event_id string, event _name string,
time bigint, event url string,
group_1id bigint, group_name string,
group_city string, group_country string,
group_ lat double, group lon double,
group_state string, group urlname string,
guests bigint, member_id bigint,
member_name string, photo string,
mtime bigint, response string,
rsvp _id bigint, venue_id bigint,
venue_name string, venue_lat double,
venue_lon double)
PARTITIONED BY (year INT, month INT, day INT)
STORED AS avro;

Partitioning the data with Impala

* Populating partitioning table
— the data needs to be reload

INSERT INTO meetup_avro_part
PARTITION (year, month, day)
SELECT *,
year(from_unixtime(cast(time/1000 as bigint))),
month(from_unixtime(cast(time/1000 as bigint))),
day(from unixtime(cast(time/1000 as bigint)))

FROM meetup_avro;

— Impala will create automatically directories like:
/user/zaza/mydata/year=2016/month=7/day=6/data

* Filter predicates has to be specified on partitioning columns
— where year=2016 and month=7 and day=6

Operator #Hosts Avg Time Max Time #BRows Est. #Rows FPeak Mem Est. Peak Mem Detail
01 : EXCHANGE 1 0.000n= 0.000n= o971 —1 0 -1.00 B TUNPARTITICHED
00:5CAN HDFS 1 358.004m=s 358.004m= o971 -1 1&.22 MBE 32.00 ME =zbaranow db.meetup avro

partitions=1/406 files=1 size=4.32MB

Can we do even better? (3)

We are interested in reading certain columns
But we are always reading entire row data

SOIUt'On? Day Month Year No of customers
C I 10 Aug 2013 17
olumnar store 11| Aug 2013 15
12 Aug 2013 21
2] Dec 2014 30
3] Dec 2014 34
4] Dec 2014 31
17} Feb 2015 12
18] Feb 2015 16

Parquet data format
% Parquet

 Based on Google “Dremel”

Columnar storage

Logical table Row layout
® s [a1 o1 [ct [a2 [b2]c2]a3 b3 [cafad bsa]caas]bs[ecs]
o [a]e[e
o (c) at | b1 | ¢t
a2 | b2 | c2 Column layout
Nested schema :: : 3 [at [a2 [a3 [a4 [a5 [b1 [b2 [063 [b4 [05| ct [c2 |3 |ca | c5 |
a5 | b5 | c5 v l l encoding
[encodedchunk | encodedchunk | encodedchunk |
Pushdowns Vertical partttioning % Horizontal partitioning _ Read only the data
(projection push down) (predicate push down) ~ you need!
b C b » c ‘ a b c
b1
b2 a2 | b2 | ¢2 b2
b3 + 1Fa3 | b3 |Fe3y| = b3
[———1
b4
b5

Slicing and dicing

Horizontal and vertical partitioning — for
efficient data processing

Month Year

Aug
Aug
Aug

Dec
Dec
Dec

Feb
Feb

No of customers

17
15
21

30
34
31

12
16

/

\

<
Col2

Horizontal and vertical partitioning

e Create a new table

CREATE TABLE meetup_parquet_part
(event_id string, event _name string,
time bigint, event url string,
group_id bigint, group_name string,
group city string, group_ country string,
group lat double, group lon double,
group state string, group urlname string,
guests bigint, member_id bigint,
member_name string, photo string,
mtime bigint, response string,
rsvp _id bigint, venue_id bigint,
venue _name string, venue_lat double,
venue_lon double)
PARTITIONED BY (year INT, month INT, day INT)
STORED AS parquet;

Horizontal and vertical partitioning

* Populating partitioning table

— the data needs to be reload

INSERT INTO meetup_parquet part
PARTITION (year, month, day)
SELECT *,
year(from_unixtime(cast(time/1000 as bigint))),
month(from_unixtime(cast(time/1000 as bigint))),
day(from unixtime(cast(time/1000 as bigint)))
FROM meetup avro;

[]
* R
un queries
Operator #Hosts Avg Time Max Time #Bows Est. #Rows Peak Mem E=st. Peak Mem Detail
01 : EXCHANGE 1 1.000m= 1.000m= o971 —1 0 -1.00 B UHBPARTITICHED
00:5CAN HDFS 1 2985.002ms 259.002m= o971 —1 3.53 MB 112.00 ME =baranow db.meetup pargquet ..

BytesRead: 1.06 MB (1115834)

D

Can we query faster? (4)

* Use compression?
— Snappy — lightweight with decent compression rate
— Gzip — to save more space but affect performance

* Using an index?
* |In Hadoop there is a ‘format’ that has an index
-> HBase

HBase in a nutshell HSRASE

HBase is a key-value store on top of HDFS

— horizontal (regions) + vertical (col. families)
partitioning

— row key values are indexed within regions

— data typefree — data stored in bytes arrays

Fast random data access by key

Stored data can be modified (updated, deleted)

Has multiple bindings
— SQAL (Impala/Hive, Phoenix), Java, Python

Very good for massive concurrent random data
access

..but not good for big data sequential processing!

HBase: master-slaves architecture

Lookup Master and - Zookeeper
- \ ROOT- location Register Master and -
ROOT- location
PyApp REST
Gateway
HBase
JavaApp HBase
Shell
Master
\ Client
Assign regions to region servers
Check health of region servers
Reads rites
™~ ' ™ 's) s ™y r)
Region Region Region Region Region
Server Server Server Server Server
e ————
Data Data Data Data Data Name
Node Node Node Node Node Node
J \,) \ J \) \ J

HDFS

HBase table data organisation

Region Servers - Physical Layout

Table - Logical View

Rows Region Server 1 Region Server 2 Region Server 3
A
. Keys: [1-Z)
' Keys: [I-M)
H
: Keys: [F-I)
j Keys: [A-C)
d Keys: [M-T)
. Keys: [C-
; eys: [(-F)

More about HBase: https://indico.cern.ch/event/439742/

https://indico.cern.ch/event/439742/

Creating and loading data to an HBase table with SQL

* Creating HBase table (with 4 column families)

$ hbase shell
> create 'meetup <username>', ‘event', 'group’', 'member’', 'venue'
> quit

* Mapping Hive/Impala table to HBase table

$ hive
> CREATE EXTERNAL TABLE meetup hbase
(key string, event _id string, event_name string, time bigint, ...)

STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler’

WITH SERDEPROPERTIES ("hbase.columns.mapping" =
":key,event:event_name,event:time,event:event_url,group:group_id,group:gro
up_name, group:group_city,group:group_country,group:group_lat,.. ")

TBLPROPERTIES("hbase.table.name" = "meetup_<username>");

e Populating the table (key=event_time,even_if, modification time)

$ hive

> INSERT INTO meetup hbase SELECT concat(
cast(nvl(time, @) as string), event_id, cast(mtime as string)), *
FROM meetup csv;

Query data by key on HBase through Impala/Hive

* Run queries

$ impala-shell
> SELECT *
FROM meetup hbase

WHERE key BETWEEN "1462060800" AND "1467331200";

> SELECT *
FROM meetup hbase
WHERE key BETWEEN

cast(unix_timestamp("2016-07-06 10:30:00") as string)
AND cast(unix_timestamp("2016-07-06 12:00:00") as string);

> SELECT * FROM meetup hbase
WHERE key = '14679936000002319268721467404430663"

lCperator $#Hosts Avg Time Max Time #Bows Est. #Rows Peak Mem Est. Peak Mem Detail
01 : EXCHANGE 1 0.000n= 0.000n= 644 725 .44K Q -1.00 B TUNPARTITICNED
00 : 5CAN HBASE 1 &63.000m= &3.000m= 644 725 .44K 4.00 EB 1.00 GB

00 :5CAN HBASE [zbaranow db.meetup hbase]
start key: 1467801000
stop key: 146780640040

Formats summary

* Hands-on results

data size (MB)

1000
770
800
600
400
159
200 76 76 42
0 - || |] —
Csv Avro Avro Parquet HBase

partitioned partitioned

 Production data

1400 GB

1240 GB
1200 GB

1000 GB
800 GB

600 GB

400 GB

Data Volume

200 GB

0GB

Csv Avro Parquet

M no compression M snappy M bzip2

query time (s)

1.9
2
1.4
1.5
1 0.87 0.8
. 0.5
0-5 .
. _
Ccsv Avro Avro Parquet HBase
partitioned partitioned
800 s 57s
687 s
700 s

600 s
500 s
400 s
300 s
200's
100 s

Os

Query execution time

CSv

M NO compression

113s 1185

Avro Parquet

M snappy M bzip2

When to use what?

Partitioning -> always when possible
Fast full data (all columns) processing -> Avro
Fast analytics on subset of columns -> Parquet

Only when predicates on the same key columns -> HBase
(data deduplication, low latency, parallel access)

Compression in order to further reduce the data volume
— without sacrificing performance -> Snappy
— when data access is sporadic -> Gzip/Bzip or derived

Summary

 Hadoop is a framework for distributed data
processing

— designed to scale out

— optimized for sequential data processing
— HDFS is the core of the system

— many components with multiple functionalities
* You do not have to be a Java guru to start using it

* Choosing data format, partitioning scheme is a

key to achieve good performance and optimal
resource utilisation

Questions & feedback

it-dep-db-sas@cern.ch

