RIS in dysprosium and erbium for scheme development and determination of the first ionization potential

D. STUDER¹, P. DYRAUF¹, P. NAUBEREIT¹, D. MATSUI², R. HEINKE¹ AND K. WENDT¹

¹Institute of Physics, Johannes Gutenberg-University Mainz ²Department of Physics, Nagoya University

- 1. Motivation
- 2. Experimental Setup
- 3. Methodic background & application on spectroscopic data in erbium
- 4. Spectroscopic results in dysprosium
- 5. New ionization schemes for Dy and Er
- 6. Conclusion & Outlook

Motivation

- Limited knowledge of high-lying energy levels for most lanthanide elements
- Laser excitation scheme development for efficient ionization
 - \rightarrow radioisotope production for medical applications (see talk of V. Gadelshin)
 - \rightarrow studies of nuclear structure via high-resolution spectroscopy in rare isotopes
- Re-determination of the first ionization potential with high precision

LA³NET Laser Ion Sources Workshop - Paris 2016

Experimental Setup

Laser System

Titanium:sapphire laser specifications:

- Spectral range of 690 to 960 nm
- SHG: 345 to 480 nm
- Mode-hop-free tuning with grating Ti:Sa

- Linewidth of 3 8 GHz
- Output power of up to 4 W
- Repetition rate 3 10 kHz
- 50 ns pulse length

Erbium Excitation Schemes

Erbium (Z = 68) two-step schemes

E. F. Worden, R. W. Solarz, J. A. Paisner, and J. G. Conway, Journal of the Optical Society of America 68, 52 (1978) W. C. Martin, R. Zalubas, and L. Hagan, NSRDS-NBS, Washington: National Bureau of Standards, US Department of Commerce (1978)

Spectroscopic Data in Er

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

IG U

- Total number of 335 peaks (including AI spectrum of scheme A) observed
- Resonances partly appear as fine-structure multiplets
- Interloper states shift energy positions of Rydberg-states and influence their intensity

Graphic Analysis of Rydberg Series

• Assignment of n^* and δ to each energy channel

JOHANNES GUTENBERG

INIVERSITÄT MAINZ

- Visualization of intensity by color code
- Minimization of slope of δ for Rydbergseries

$$E_n = E_{\infty} - \frac{R_{\mu}}{(n - \delta(n))^2}$$
$$= E_{\infty} - \frac{R_{\mu}}{(n^*)^2}$$

$$\delta(n) = \delta_0 + \frac{\delta_1}{(n-\delta_0)^2} + \frac{\delta_2}{(n-\delta_0)^4} + \dots$$

LA³NET Laser Ion Sources Workshop - Paris 2016

Analysis of the 6snd-series

low energy FS component: $E_{\infty} = 49260.71(7) \text{ cm}^{-1}$ high-energy FS component: $E_{\infty} = 49260.73(7) \text{ cm}^{-1}$ Analysis of the 6sns-series

Determination of the IP in Er

IP_{Er}^{lit} = 49262(8) cm⁻¹

E.F. Worden, R.W. Solarz, J.A. Paisner, J.G. Conway, J. Opt. Soc. Am. 68(1), 52 (1978)

Spectroscopic data in Dy

#	$\lambda_1 \; [\mathrm{cm}^{-1}]$	FES	$\lambda_{\rm scan} \ [{\rm cm}^{-1}]$
$\begin{array}{c} 1\\ 2\\ 3\end{array}$	23877.74 23832.07 23736.60	$ \begin{array}{l} 4f^{10}({}^{5}I_{8})6s6p({}^{1}P_{1}^{o}) (8,1)_{8}^{o} \\ 4f^{9}({}^{6}H^{o})5d^{2}({}^{3}F)6s ({}^{8}K^{o})_{8} \\ 4f^{10}({}^{5}I_{8})6s6p({}^{1}P_{1}^{o}) (8,1)_{9}^{o} \end{array} $	$22800 \rightarrow 25130$ $23150 \rightarrow 25200$ $23640 \rightarrow 25420$

LA³NET Laser Ion Sources Workshop - Paris 2016

JG

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

effective principal quantum number n*

Spectroscopic results in Dy

 $\delta(n) = \delta_0 + \frac{\delta_1}{(n - \delta_0)^2}$

U. Fano, C. E. Theodosiou, and J. L. Dehmer, Reviews of Modern Physics 48, 49 (1976)

LA³NET Laser Ion Sources Workshop - Paris 2016

IP_{Dv}^{lit} = 47901.7(6) cm⁻¹

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

JG U

H.J. Zhou, X.Y. Xu, W. Huang, D.Y. Chen, Acta Physica Sinica (Overseas Edn) (1), 19 (1992)

new value: 47901.77(7) cm⁻¹

New ionization scheme for Dy

JOHANNES GUTENBERG

JGU

Efficiency measurements at RISIKO: 28%, 26%, 18%, 27%

LA³NET Laser Ion Sources Workshop - Paris 2016

New ionization scheme for Er

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

JG U

• First ionization potential of Dy and Er re-detemined with high-precision

IP(Dy):	47901.7(6) cm ⁻¹	→ 47901.77(7) cm ⁻¹
IP(Er):	49262(8) cm ⁻¹	→ 49260.73(6) cm ⁻¹

- Ionization efficiency of 24% for Dy demonstrated at RISIKO mass separator with new three-step excitation scheme
- New two-step excitation scheme for Er successfully tested in the ToF reference cell at GANIL

Outlook:

- Test three-step excitation in erbium
- Efficiency measurements for erbium at RISIKO

Thank you for your attention.

