REGLIS³-LEB Radio Frequency Quadrupole simulations

Emil Traykov

Instrumentation d'Accélérateurs IPHC / Strasbourg LA³NET workshop

Outline

- Radioactive isotope/beam production with S³ spectrometer
- Nuclear spectroscopy (delayed and IGLIS)
- S³ Low Energy Beam (S³-LEB) line concept
- Simulations for REGLIS³ and S³-LEB
 - Gas jet interaction with ions
 - S-shaped Radio Frequency Quadrupole (SRFQ) cooler
 - miniRFQ stage for differential pumping
 - Quadrupole Mass Filter (QMF)
 - 76° bent RFQ buncher (RFQb)
 - Multi-reflection Time-of-Flight mass spectrometer
 - Connections to identification station and DESIR

- Status and outlook

RIB lines of SPIRAL2 and S³ spectrometer

Radioactive isotope (beam) production from S³ spectrometer

- ⇒ In-flight production experiments at S³ experimental hall dedicated detection setups
- ⇒ Low energy beams using In-Gas Laser Ionization and Spectroscopy
 - ⇒ MR-TOF-MS isobaric selection and decay station downstream S³ LEB line
 - ⇒ DESIR experimental hall DESIR LEB line (in addition to SPIRAL1 beam line)

REGLIS-LEB RFQ simulations, Emil Traykov, IPHC Strasbourg, 25-10-2016, page 2/15

Institut Phytodiccipilinaire Hydroconte

³ The Super Separator Spectrometer

REGLIS-LEB RFQ simulations, Emil Traykov, IPHC Strasbourg, 25-10-2016, page 3/15

Operation and optical modes of S³ spectrometer

REGLIS-LEB RFQ simulations, Emil Traykov, IPHC Strasbourg, 25-10-2016, page 4/15

Optical modes of S³ spectrometer

1. High Resolution mode

- Designed for maximum selection
- Weighted mass resolution: **M/ΔM = 460**
- Folded transmission: 50% for ⁵⁸Ni + 46 Ti \Rightarrow 100 Sn²⁴⁺ + 4n

2. High Transmission mode

- Designed for very asymmetric reactions (large emittances)
- Weighted mass resolution: $M/\Delta M = 260$
- Folded transmission: 15-20% for ${}^{22}Ne + {}^{238}U \Rightarrow {}^{255}No + 5n$

3. Converging mode

- Designed for gas cell Laser spectroscopy
- Folded transmission: 68% for ⁵⁸Ni + ⁴⁰Ca ⇒ ⁹⁴Ag + p3n
- Folded transmission: 56% for ${}^{48}Ca + {}^{208}Pb \Rightarrow {}^{254}No + 2n$

x-y distributions at the Final Focal Plane [mm] for different operating modes

REGLIS-LEB RFQ simulations, Emil Traykov, IPHC Strasbourg, 25-10-2016, page 5/15

Low energy beam line of S³ spectrometer

REGLIS³: In-gas cell laser ionization and spectroscopy

- Thermalization/neutralization in gas (Ar, He)
- Selective laser ionization of reaction products
- HR laser spectroscopy in gas jet (⁹⁴⁻⁹⁶Ag, ¹⁰¹⁻¹⁰⁵Sn, trans-actinides)
- Decay spectroscopy and mass measurements
- RIB collection, cooling and mass selection
- Isobaric mass selection

Main components of the S³-LEB

- Gas stopper and nozzle
- S-shaped RFQ cooler (SRFQ)
- Mini RFQ guide (mRFQ)
- Quadrupole mass filter (QMF)

REGLIS-LEB RFQ simulations, Emil Traykov, IPHC Strasbourg, 25-10-2016, page 6/15

Ion transport simulations

- b Dimensions and distances
- DC and RF electronics
- Solution Vacuum and gas systems

Institut Pluridisciplinaire Mudercure Structecure

EM simulations with SIMION + gas-ion interactions

SIMION – main advantages

- Instantaneous particle tracing
- User programming (background gas interaction)
- Fast adjustment of parameters

Linear RFQ: ion stable motion – operating modes

IFFC Optimized electrode design for injection into the SRFQ

Buffer gas cooling pressure (operational range): 0.01 mbar to 0.1 mbar

REGLIS-LEB RFQ simulations, Emil Traykov, IPHC Strasbourg, 25-10-2016, page 9/15

Simulations of mRFQ performance

Beam properties downstream mRFQ

Sigma x	0.34 mm
Sigma y	0.32 mm
Mean KE	1.50 eV
Sigma KE	0.42 eV

- No losses in mRFQ
- Various SRFQ pressures
- Various RF amplitudes
- $-r_0 = 3 \text{ mm vs } r_0 = 4 \text{ mm}$
- p1, p2 measured
- SRFQ-mRFQ RF phase correlation not critical
- SRFQ-mRFQ q parameter matching not critical

mRFQ and Quadrupole Mass Filter design

REGLIS-LEB RFQ simulations, Emil Traykov, IPHC Strasbourg, 25-10-2016, page 11/15

Bent RFQ buncher

REGLIS-LEB RFQ simulations, Emil Traykov, IPHC Strasbourg, 25-10-2016, page 12/15

RFQ buncher extraction and acceleration to 3 kV

REGLIS-LEB RFQ simulations, Emil Traykov, IPHC Strasbourg, 25-10-2016, page 13/15

Connection to decay station DESIR beam line

REGLIS-LEB RFQ simulations, Emil Traykov, IPHC Strasbourg, 25-10-2016, page 14/15

Summary and future steps

REGLIS-LEB RFQ simulations, Emil Traykov, IPHC Strasbourg, 25-10-2016, page 15/15