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From ISR to TOTEM
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Parametrization of the elastic pp scattering amplitude

Parametrization by [Fagundes 2013] based on [Barger-Phillips 1974],
motivated by the Regge asymptotics:

. Bt
f(s,1) = ch(s)Fn(t)sa"(t) = 7“/26 : 1+ iVCe'z 0

p t

s-dependent (real) parameters are fitted separately to all known differential

pp cross sections for /s = 23.4, 30.5, 44.6, 52.8, 62.0, and 7000 GeV
with x2/d.o.f ~ 1.2 - 1.7
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Eikonal approximation

o0

fls,t) =Y (2L + 1) fi(p) Pi(cos 0)

=0
2 L o)
- / d2b h(b, 5) 70 = 2p? / bdb.Jy(bq)h (b, s)
™ 0

t=—q% q=2psin(0/2), bp=1+1/2+ O(s7Y), Pycosf) — Jo(gb)
(would need 40000 partial waves at the LHC!)

In the impact-parameter representation
hb,s) = o [1= 0] = fi(p) + O(™)
p
The eikonal approximation works well for b < 2 fm and /s > 20 GeV

Procedure: f(s,t) — h(b,s) — x(b)...

W. Broniowski (UJK & IFJ PAN) Hollowness in pp Epiphany 17 4 /19



Eikonal approximation 2

The standard formulas for the total, elastic, and total inelastic cross
sections read

4 bd .
op = %Imf(s,O) - 4p/d2b1mh(b, 5) = 2/d2b [1 —Reelx(ﬂ

oo = / d9| f(s,1)* = 4p / d*blh(b, 5)* = / d?b|1 — X O
o7 — Gol = / bnin (b) = / b [1 - e*ﬂmx(l’)]

The inelasticity profile

Oin

nin(b) = 4pImh(b, s) — 4p>|h(b, 5)|?

satisfies 0 > ni,(b) < 1 (unitarity)
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Dip (or flattening) in the inelasticity profile at b =0

Nin(b)

From top to bottom: /s = 14000, 7000, 200, 23.4 GeV
Dip: collisions more distractive at b > 0 than head-on!
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Slope of the inelasticity profile
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Transition around /s = 5 TeV
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Amplitude and eikonal phase

2p Im h(b), 2p Re h[b]
Re x(b), Im x(b) [rad]

0.0 0.5 1.0 1.5 20 25 3.0 00 05 10 15 20 25 30 35
b [fm] b [fm]
2ph(b) =i[l — eiX(b)] (top curves - Im, bottom - Re)

The dip clearly visible in Tmx/(b) for the LHC
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Importance of the real part of the eikonal phase

K(b) = Tm[2ph(8)] = 1 cos (Re[x(b)]) e 0
Re[2ph(b)] = sin (Re[x())) e N0

At the LHC Re[x(b)] < —7/2 — cos (Re[x(b)]) <0 — k(b) > 1
With the neglect of the small Re[2p h(b)])? we have then from
nin(b) = 2k(b) — k(b)?
dnin(b) _ d(D)
vz 7 db?

[1— k()] <0

— minimum develops at b =0

Glauber (1959): The eikonal phase is additive in scattering of composite
objects. The (potentially small) eikonal phases of the constituents may add
up to a large eikonal phase of the whole proton. Quantum interference is
essential
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2D vs 3D opacity — geometric idea

Projection of 3D on 2D covers up the hollow: f(z,y,z) vs ffooo dzf(z,y, z)

The hollow is covered up
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Equivalent optical potential — invariant mass method

Phenomenological method [Allen, Payne, Polyzou 2000] introduces the
total squared mass operator for the pp system:

M2 = Prp, B + ME) +V

P# — total four-momentum, p — CM three-momentum of each nucleon,
My — nucleon mass, V — invariant interaction, determined in the CM frame
by matching in the non-relativistic limit to a non-relativistic potential, i.e.,
V = 4U = 4MyV . Relativistic Schrédinger equation M2U = s¥
transforms into an equivalent non-relativistic Schrédinger equation

(=V24+U)¥ = (5/4 — M%)V

with the reduced potential U = MyV = ReU + iImU (to be determined
by inverse scattering)

No complication of spin/noncentrality (5 complex Wolfenstein amplitudes)
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Eikonal limit and optical potential

As in WKB, we solve —/2V2W = 2m(E — V)T with & = Ae?/h

(VS)? - ihv2S = 2m(E — V)

VS/h = +/p? —2mV/h?

For p > other scales

z

m
S/h:pz—h2p/ dz'V (2)

—0o0
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Inverse scattering and optical potential

Hence in the eikonal approximation one has

-

U(b, z) = exp [ipz - QZp/ U(l_;, z')dz']

0= [T oA=L [T

_% —00 b 7"2—b2

is the (complex) eikonal phase [Glauber 1959]. This Abel-type equation can
be inverted:

Utr) = v =2 [ h dbzi(i)ﬂ
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On-shell optical potential

From the definition of the inelastic cross section
1
7= [ U@ 0@
b

— density of inelasticity is proportional to the absorptive part of the optical
potential times the square of the modulus of the wave function. One can
identify the on-shell optical potential (related to Bethe-Salpeter methods)

Im W (%) = Im U (Z)| (&) >
Upon z integration,

1 —
_Z / dzIm W (b, 2) = njn(b)
p

Inversion yields

o e )
” Vb2 — 2
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Results of inverse scattering
exp. amplitude — eikonal phase — U(r) = MyV (1)
exp. amplitude — inelasticity profile — ImW (r)
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From top to bottom: /s = 14000, 7000, 200, 23.4 GeV
Large dip in the absorptive parts, in W (r) starts already at RHIC!
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Gaussian model of Dremin (2014)

2pImh(b) = k(b) = 4Xe P/@B%) | Reh(b) =0, X = ou/or

nzn(b) = zk(b) — k(b)2 = 8X€_b2/(232) _ 16X26—b2/B2
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@ X > 1/4: nj,(b) has a maximum at by = v/2Blog(4X) > 0, with k(by) = 1
@ X = 1/2: black disk limit
@ W (r) develops a dip when X > /2/8 = 0.177
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Cross sections
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oo grows relatively faster than oo
— ratio X goes above 1/4 as s increases!
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Conclusions

@ Hollowness transition inferred from the parametrization of the data,
seen in n;,(b) for s > 5 TeV

@ Quantum effect related to compositeness of the proton, rise of
2pImh(b = 0) above 1

@ 2D — 3D magnifies the effect (flat in 2D — hollow in 3D),
interpretation via optical potential in a relativized problem

o Effect impossible to obtain classically by folding the absorptive parts
from uncorrelated constituents

@ Hot-spot model [Alba Soto+Albacete 2016] — a dynamic realization

o Qualitatively similar hollowness effect appears in low-energy
(~500 keV) n-A scattering — less absorption for head-on collisions
than for peripheral!
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Fourier-Bessel transform
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(TOTEM extends far enough)
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