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     ● Goal

          Hadronisation inside fat jets 

     ● Proposed model

          Statistical Model

     ● Suggestion

           Parametrise fragmentation functions as         

Motivation

D [ x=
2 Pμ

jet ph
μ

M jet
2 , Q2

=M jet
2 ]

Energy fraction the 
hadron takes away

in the frame
co-moving with the jet

Fragmentation 
scale: jet mass



  

e+e- annihilations in the factorized picture
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2 identical jets:

pμ
q , q̄=(√s /2 ,0,0,±√s /2)

M∼[0.1−0.5]√s

● energy fraction of the
 hadron takes away from
 the energy of the jet:

Q ∼ √s

x =
ph

0

√s /2

● fragmentation scale:

Problem:  P2 ~ 0 quark produces a heavy jet of mass

∼ √ pq
2

≈ 0 ≪ M jet

Ideal world:

width:
qq
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the 2 jets are not identical

M 1

P⃗ −P⃗

M 2

light

heavy

Real world:

P1
μ=(P0 ,0,0,∣P∣)

P2
μ=(√s−P0 ,0,0,−∣P∣)

● the energy of a jet  

● fragmentation scale is no longer

Problems:

P0 ≠ (√s /2) x=
ph

0

√s /2
, so                    is no longer the 

Energy-momentum conservation:

energy fraction, the hadron takes away from the energy of the jet.

√s /2
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the 2 jets are not identical

M 1

P⃗ −P⃗

M 2

light

heavy

Real world:

P1
μ=(P0 ,0,0,∣P∣)

P2
μ=(√s−P0 ,0,0,−∣P∣)

Energy-momentum conservation:

● the real energy fraction the hadron
 takes away from the energy of the jet
 in the frame co-moving with jet:

Q∼M jet

x=
2 ph

μ Pμ
jet

M jet
2

● the jet mass as fragmentation scale:

We propose to use:



  

Natural variables?
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pμ

h

Pμ D ( p , P)

What invariants can we make out from        and       ?Pμ
pμ

p2
≈ 0 P2 = M jet

2

(P−p)
2

= M jet
2

−2Pμ pμ
=M jet

2 (1−2Pμ pμ

M jet
2 ) = M jet

2
(1− x )

● ●

●



  

     ● Suggestion

           Parametrise fragmentation functions as         

D [ x=
2 Pμ

jet ph
μ

M jet
2 , Q2=M jet

2 ]
Energy fraction the 
hadron takes away

in the frame
co-moving with the jet

Fragmentation 
scale: jet mass



  

Statistical

Fragmentation

These new variables, x and M
jet

 emerge naturally in a 

Model



  

Problems                                  
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The haron distribution in a jet of n hadron with total momentum P

p0 d σ

d3 p

n=fix

∝ (1−x )
n−3 , x =

Pμ pμ

M 2/2

p
T

p
Z

P⃗ /2
M

E

● Averaging over multiplicity fluctuations
P (n)=(n+r−1

r−1 ) p̃n(1− p̃)r

Urmossy et. al., PLB,
718, 125-129, (2012)

Urmossy et.al.,PLB,
701: 111-116  (2011)

Refs.:

p0 d σ

d3 p
= A [1+

q−1
τ x ]

−1/(q−1)

Statistical ~ we only focus on the phasespace



  

Scale evolution



  

2.
Approximations

Let the FF preserve its form:

K. Urmossy        –       Hadronisation @ LEP, RHIC & LHC

Dapx (x , t) = A (t )(1+
q(t )−1
τ (t )

x)
−1/(q (t)−1)

with D(x , 0) = A0(1+
q0−1
τ0

x)
−1/(q0−1)

First step: 

Let us prescribe the approximations:

∫Dapx(x , t) = ∫ D (x , t)

∫ x Dapx (x , t) = ∫ x D(x , t ) = 1

∫ x2 Dapx (x ,t ) = ∫ x2 D(x , t)

(by definition) τ(t )=
τ0

α4(t /t 0)
−a2−α3(t / t0)

a1

q(t )=
α1(t / t 0)

a1
−α2(t / t 0)

−a2

α3(t / t0)
a1−α4(t / t0)

−a2

a1=P̃(1)/β0 , a2= P̃(3)/β0

Urmossy, Z. Xu, arXiv:1606.03208

Φ3 theory



  

Fits



  

but,
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We have a haron distribution, which depends on x =
Pμ pμ

M 2
/2

 

                        -  pp collisions:       is measured, E fluctuates

                        -  e+e- → 2 jet: both E and      of the jets fluctuate

                        -  e+p → 2 jet:       of the jets fluctuate

P⃗

P⃗

P⃗

in case of available data, the jet E or P fluctuate:

So, we fit a characteristic/average jet mass and extract the
scale dependence of the parameters of the model

What dataset to analyse?
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                        -  pp collisions:       is measured, E fluctuates

                        

                        -  e+p → 2 jet:       of the jets fluctuate

P⃗

P⃗

So, we fit a characteristic/average jet mass and extract the
scale dependence of the parameters of the model
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e+P → 2 jets 

Urmossy, Z. Xu, arXiv:1606.03208

P⃗ jet

ph
T

P⃗ jet

ph
∥

ϑc

proc. of conf.: DIS2016, arXiv:1605.06876

PP → jets 
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Fitted average characteristic jet mass

〈 M JET 〉 = M 0 + EJET /E0fitted Fitted average jet mass is of the
order of that used in DGLAP calcs.

〈 M JET 〉 ∼ 2 EJET sin (ϑcone)

2 EJET sin (ϑcone)

Urmossy, Z. Xu, arXiv:1606.03208
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Scale evolution of the fit parameters

t=ln ( M jet
2

/ Λ
2 )

τ(t )=
τ0

α4(t /t 0)
−a2−α3(t / t0)

a1q(t )=
α1(t / t 0)

a1
−α2(t / t 0)

−a2

α3(t / t0)
a1−α4(t / t0)

−a2

Urmossy, Z. Xu, arXiv:1606.03208



  

Interpretation of the results

Inside light jets
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D (x ) ≈ exp {−x / τ}

Inside heavy jets

M 1 M 2

The fragmentation
function:

The multiplicity
distribution:

D(x ) ≈ (1+
q−1
τ x )

−1/(q−1)

P (n) ≈
(1 / τ)

n

n!
e−1/ τ P (n) ≈ (n+r−1

r−1 ) p̃n(1− p̃)r

p̃ = (q−1)/(τ+q−1) r = 1/(q−1)−3



  

Interpretation of the results
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Evolution of the mean multiplicity and its dispersion:

〈n 〉 =
4−3q0

τ0
(t / t0)

−a2 ∼ lna(M jet)

〈n2〉−〈n 〉2 = 〈n 〉[ 3−2q0
τ0

(t /t 0)
a1 + 1 − 〈n 〉]
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Scale evolution of the fit parameters

Urmossy, Z. Xu, proc. of conf.: DIS2016, arXiv:1605.06876

simultanous
fit to q, τ

fit to q alone

fit to τ alone

Why does it look so messy? Jet mass fluctuations spoil things?
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Mass-averaged fits are better

Mass-averaged

un-averaged

D (x , t) = ∫
x

1
dz
z

f (z , t)D0(x / z)

t=ln ( M jet
2

/ Λ
2 )

The fragmentation function is
        jet mass dependent

The jet mass fluctuates as

ρ(M jet) ∼ lnb
( M jet /M 0 )/M jet

c



  

Does anybody know how to handle

Off-shell

Scale Evolution?

with DGLAP?

What are the splitting functions? 



  

● It might be worthy
   not to neglect
   parton virtualities?

Conclusion

     ● Suggestion

         It might be more suitable to 

          characterise JETs with their MASS

          instead of thier P or E



  

     ● Suggestion

           Parametrise fragmentation functions as         

D [ x=
2 Pμ

jet ph
μ

M jet
2 , Q2

=M jet
2 ]

Energy fraction the 
hadron takes away

in the frame
co-moving with the jet

Fragmentation 
scale: jet mass

Conclusion



  

Off-shell scale evolution
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Thus, the equation for D is

pμ
h

Pμ

D(p , P)

pμ
h

Pμ

D(p , k)

D(p' , P−k )

kμ

= =

D (p , P) ∼ ∫d D k
g2

(k2
)D (p , k )

k4
(P−k )

4 ∫d D p' D(p ' , P−k )

Let us parametrise D as

D( p , P) ∼ P4
ρ(P2

) f ( p , P)

∫d D p f (p , P)=1jet mass distribution

conditional probability of a
hadron with p in a jet with P

Resumming the splittings in the Φ3 theory



  

Off-shell scale evolution
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Thus, we optain 2 equations for f and ρ

pμ
h

Pμ

D(p , P)

pμ
h

Pμ

D(p , k)

D(p' , P−k )

kμ

= =

D ( p , P) ∼ ∫d D k
g2

(k2
) D( p , k )

k 4 ρ [(P−k)2 ]

Resumming the splittings in the Φ3 theory

ρ ( P2 ) ∼ ∫d D k g2
(k2

)ρ ( k2 )ρ [(P−k )
2 ]



  

Back-up



  

π+ spectrum in pp --> π+X @ √s=7 TeV (NLO pQCD)

Barnaföldi et. al., Proceedings of the Workshop Gribov '80 (2010)

D pi

π+

(z)∼(1+(qi−1) z /T i)
−1 /(qi−1)

AKK vs. Tsallis
as Frag. Func.

Application in a pQCD calculation
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 Boltzmann

1.

  Tsallis ∼ (1+
(q−1)ϵ

T )
−1/ (q−1)
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The spectrum is not Boltzmann

T, μ obtained by fitting spectra with

∼exp(−
ϵ−μ

T )

Search for the critical point

Goal: to describe the dependence of q, T on √s and centrality



  

Negative Binomial hadron multiplicity distribution

Urmossy et. al., PLB,
718, 125-129, (2012)

Urmossy et.al.,PLB,
701: 111-116  (2011)

Urmossy,
arXiv:1212.0260

J. Phys. G: Nucl. Part.
Phys. 37 085104 (2010),

e-e+ → h± pp → jets @ 7 TeV pp → h± @ LHC AuAu → h± @RHIC

Barnaföldi etal, J. Phys.: Conf. 
Ser., 270, 012008 (2011 )

Power-law hadron spectra

Idea of our statistical model is to combine



  

Statistical jet-fragmentation

If |M| ≈ constans, we arrive at a microcanonical ensemble:

The cross-section of the creation of hadrons h1 , … , hN in a jet of N hadrons

d σh1 ,…, hN = ∣M∣2δ(4 )

(∑i

ph i

μ −Ptot
μ

)dΩh1 ,…, hN

K. Urmossy        –       Hadronisation @ LEP, RHIC & LHC

d σh1 ,…, hn ∼ δ(∑i

ph i

μ −Ptot
μ

)dΩh1 ,…, hn
∝ (Pμ Pμ)n−2 = M 2n−4

Thus, the haron distribution in a jet of n hadron is

p0 d σ

d3 p

n= fix

∝
Ωn−1(Pμ−pμ)

Ωn(Pμ)
∝ (1−x )

n−3 , x =
Pμ pμ

M 2/2

Energy of the hadron
in the co-moving frame



  

Interpretation of q and τ

〈 p0〉 = d τ
M /2

1−(d+2)(q−1)
→ d τ (M /2)

K. Urmossy        –       Hadronisation @ LEP, RHIC & LHC

q measures 'deviation' from the exponential distribution

Equipartition

q → 1,(if                 )

[1+
q−1
τ x ]

−1 /(q−1)

→ exp {−x / τ }

d=2 is the effective dimension of d3 p

p0



  

Negative Binomial hadron multiplicity distribution

Power-law hadron spectra

Idea of our statistical model is to combine

Let us pick the simplest reaction: e+e- annihilations



  

2.
How good is the approximation?
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x (1+
q−1
τ x )

−1/(q−1)

xb lna (1 / x )

Q/Q
0
 = 1, 2, 100

Dist. Gauss in ln(1/x)

x x x

〈 ln j (1/x ) 〉
Requirement:

moments: 〈 x j 〉 〈 ln j (1/ x ) 〉

be equal in case of the shape preserving, approximate solution
and the exact solution

Q/Q
0
 = 1, 2, 100 Q/Q

0
 = 1, 2, 4



  

What we have:

          ● an approximate formula for the fragmentation function
              which does not solve DGLAP 

         ● Let us use this ansatz with scale dependent parameters

         ● along with some other conjectures

            First step: in the Φ3 theory

D (x ) ∼ [1+ q−1
τ x ]

−1/(q−1)

q , τ → q (t) , τ(t)



  

d
dt

D (x ,t ) = g2∫
x

1
dz
z

P (z)D (x / z , t ), t = ln (Q2/Λ2), g2 = 1 /(β0 t )

2.
The Φ3 theory case

Resummation of branchings with DGLAP

P(z) = z(1−z)−
1

12
δ(1−z)

Let the non-perturbative input at starting scale Q
0
 be: 

The full solution is

f (x) ∼ δ(1−x) + ∑
k=1

∞ bk

k !(k−1)!
∑
j=0

k−1
(k−1+ j)!

j !(k−1− j)!
x lnk−1− j [ 1

x ] [(−1)j+(−1)k x ]

b = β0
−1 ln (t / t0 )

K. Urmossy        –       Hadronisation @ LEP, RHIC & LHC

with LO splitting function: 

D0(x) = (1+
q0−1
τ0

x)
−1/(q0−1)

D (x , t) = ∫
x

1
dz
z

f (z , t)D0(x / z)

with

Urmossy, Z. Xu, arXiv:1606.03208

D does not preserve its shape:

∫
x

1
dz
z

f (z ,t )(1+
q0−1
τ0

x
z )

1/(q0−1)

≠ (1+
q(t )−1
τ(t )

x)
1 /(q (t )−1)

It is only an
approximation!



  

2.
The solution is similar in QCD

K. Urmossy        –       Hadronisation @ LEP, RHIC & LHC

Soultion in the Φ3 theory (at LO splitting and 1-loop coupling) :

D̃(ω , t )
D̃(ω , t 0)

= exp {b(t ) P̃ (ω)} ∼ (t / t 0)
P̃ (ω)/β0

Soultion in QCD :

D̃q /g
h

(ω , t )

D̃q /g
h (ω , t 0)

= exp {∫
t0

t

dt ' γ(ω , t ')} ∼ F (t /t 0 ,ω)

t=ln ( M jet
2

/ Λ
2 )

τ(t )=
τ0

α4 F (t / t0 , 3)−α3 F (t / t0 , 1)
q(t )=

α1 F (t / t 0 ,1)−α2 F (t / t0 ,3)

α3 F (t / t0 ,1)−α4 F (t /t 0 , 3)

Thus, q, τ would look like :

τ(t )=
τ0

α4(t /t 0)
−a2−α3(t / t0)

a1q(t )=
α1(t / t 0)

a1
−α2(t / t 0)

−a2

α3(t / t0)
a1−α4(t / t0)

−a2

and q, τ are :

t=ln ( M jet
2

/ ΛQCD
2 )
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