WORKING ON THE FIK:
MAKE ATLAS GREAT
AGAIN

University of Pisa



i O -

summe

These boards are AMBs or Associative N
Boards which are responsible for processing hits and
track fitting the data that comes from the ATLAS
detectors.

::::
‘‘‘‘‘‘




£7800000
£f0803ct
££2803ct
££4803ct
£f£f6803ct
£7800001
fflcO26c
££f1e0137
ff3c026c
ff3e0137
ff5c026c
££5e0137
ff7c026c
££70137
£7800002
££f02051e
£ff0c0152
ffla0358
ff1e073b
£f22051e
££2c0152
£f3a0358
£f3e073b
££f42051e
£f4c0152
ff5a0358
£f5e073b
ffe2051e
ff6c0152
f£f7a0358
££7073b
£7800003
££f0200£5

#!/hmarez/public/python
, sorts, and plots output data from AMBoar
numpy as np
matplotlib.pyplot as plt
5yS
string as str
ions as col

#isolat
Tdef rem

?def
return s[:-6]
#select the file that you would like to view
?if(len(sys.argv) 2)
sys.exit ('P
else:
filename = sys.argv[1]
#open the selected file and read in data
owith open(filename) as f:
mylist = [n for n in f.read().splitlines() if not n.startswith('f
for line in mylist:
bbdata = []
results =[]
iplist = [remove bb(s) for s in mylist]
for line in chiplist:
chipad = int(line, 16)//0xC
results.append(chipad)
bblist = [remov hip(s) for s in mylist]
for line in bblist:
bbint = int(line, 16)
bbdata.append (line)

PROGRAMMING: PYTHON

The way that data about each
chip in the board outputs is in
a byte based format using
hexadecimal based variables.

| wrote a program that could
break this output apart and
analyze where the data is
coming from to test the state
of the board.

7



Command Prompt Graphing: Matplotlib

[B® Command Prompt

outroads_sim.out ~ Number of Roads vs. Chip Address

Counter({28: 7, 53: 7, 5: 6, 8: 6, 14: 6, 37: 6, 20: 5, 41: 5, 4: 4, 6: 4, 18: 4

, 45: 4, 52: 4, 63: 4, 32: 3, 57: 3, 0: 2, 1: 2, 2: 2, 3: 2, 7: 2, 9: 2, 10: 2,
11: 2, 12: 2, 13: 2, 15: 2, 16: 2, 17: 2, 19: 2, 21: 2, 22: 2, 23: 2, 24: 2, 25:
2, 26: 2, 27: 2, 29: 2, 30: 2, 31: 2, 33: 2, 34: 2, 35: 2, 36: 2, 38: 2, 39: 2,
40: 2, 42: 2, 43: 2, 44: 2, 46: 2, 47: 2, 48: 2, 49: 2, 50: 2, 51: 2, 54: 2, S5
: 2, 56: 2, 58: 2, 59: 2, 60: 2, 61: 2, 62: 2})

Counter({'ff": 174})

Total number of roads: 174

Total time: 1.740000000000001e-06 s | 17.40000000000001 % of max time

C:\Users\Haley\Documents\FTK Papers & Background Research>python readfile.py lou

troads_sim.out

Counter({4: 28, 20: 28, 36: 28, 52: 28, 14: 21, 30: 21, 46: 21, 62: 21, 7: 20, 2|
3: 20, 39: 20, 55: 20, 1: 17, 3: 17, 6: 17, 8: 17, 17: 17, 19: 17, 22: 17, 24: 1
7, 33: 17, 35: 17, 38: 17, 4e: 17, 49: 17, 51: 17, 54: 17, 56: 17, 5: 16, 21: 16|
, 37: 16, 53: 16, 12: 15, 28: 15, 44: 15, 60: 15, 9: 14, 25: 14, 41: 14, 57: 14,
0: 13, 10: 13, 16: 13, 26: 13, 32: 13, 42: 13, 48: 13, 58: 13, 2: 12, 18: 12, 3|
4: 12, 50: 12, 13: 11, 29: 11, 45: 11, 61: 11, 11: 9, 27: 9, 43: 9, 59: 9, 15: §
, 31: 6, 47: 6, 63: 6})

Counter({'ff": 984})

Total number of roads: 984

Total time: 9.840000000000002e-06 s | 98.40000000000003 % of max time

w
o
]
o
o
«
<]
C
@
o
13
S
=

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

C:\Users\Haley\Documents\FTK Papers & Background Research>_ v Chip Address

- Eachroadis counted and listed based on its source path in the
board as well as how many panels had hits.

- The program will output a graph that displays how many roads are
being produced by each chip on the board.



Random
Generator

*Poisson
Distribution

e Uniform Int PROGRAMMING:C++11

Distribution

e Random
Device

e Mersenne

Twister 19937
rdev{}

mt19937 gen{}

| have been updating the random
generating systems used within the
mainboard C++ code that is used to

produce input files to test the board.
Now that ATLAS uses C++11 | rewrote
Lneiade Srandom some of the code to utilize the

{ <random> library to update the
using namespace std;
random device rdev{}; seed, random generator (Mersenne
mt19937 gen{}; Twister) and introduce new Poisson
int seed = rdev(); and uniform distributions.
int pattmin, pattmax;

pattmin =
pattmax =

Distribution

poisson distribution<int> distribution(7);
int nroads int = distribution(gen):;

uniform int distribution<int> dist (pattmin,pattmax);
for (int i=0;i<nroads int;i++){

int index = dist(gen):;
}

return 0;




Low Number of Roads High Number of Roads

20 30 40
Chip Address

0 30 40
Chip Address

LOOKING AT THE UNIFORM
DISTRIBUTION



