A few topics after Rome on FCC-ee Optics

- A short try for 4 IP
- Effect of radiation fluctuation on dynamic aperture
- Low emittance tuning (S. Aumon)
- An IR optics with a new location for crab sextupole (A. Bogomyagkov)

Ideal case: perfect period $4, \mathrm{RF}$ at 45°

Ideal case: perfect period $4, \mathrm{RF}$ at $45^{\circ}(2)$

$$
175 \mathrm{GeV}, \beta_{x, y}^{*}=(0.5 \mathrm{~m}, 1 \mathrm{~mm})
$$

- The effect on the dynamic aperture is small.
- $\pm 2 \%$ momentum acceptance is maintained.

RF at the odd straight: perfect period 4

RF at the odd straight: perfect period 4 (2)

$175 \mathrm{GeV}, \beta^{*}{ }_{x, y}=(0.5 \mathrm{~m}, 1 \mathrm{~mm})$

- The dynamic aperture has shrunk a little.
- The momentum acceptance has reduced to $\pm 1.7 \%$.

RF at the odd straight, symmetric: period 2

RF at the odd straight, symmetric: period $2(2 \leftrightarrows E C)$

$$
175 \mathrm{GeV}^{2} \beta^{*}{ }_{x, y}=(0.5 \mathrm{~m}, 1 \mathrm{~mm})
$$

- The dynamic aperture has shrunk.
- The momentum acceptance has reduced to $\pm 1.0 \%$.
- If we put more conditions on the geometry \& IR, it will be even worse.

Summary for 4IP

- A preliminary design for optics with 4 IP is tried.
- Usable optics will be possible by locating the RF at 45° at the arc.
- Placing the RF at the short straights of FCC-hh reduces the dynamic aperture drastically.
- More investigation/ideas are needed for 4 IP with the geometry of FCChh.

Effect of Radiation Fluctuation

$$
E=175 \mathrm{GeV}, \beta_{x, y}=(1 \mathrm{~m}, 2 \mathrm{~mm})
$$

Radiation damping only

Radiation damping + fluctuation

- (Right figure) 100 samples are taken to evaluate the dynamic aperture with radiation fluctuation.
- Within the lines: particles of 75% of the samples survive.
- Error bars correspond to the range of survival between 50% and 100% of the samples.

Effect of Radiation Fluctuation (2)

$$
E=175 \mathrm{GeV}, \beta x, y=(0.5 \mathrm{~m}, 1 \mathrm{~mm})
$$

Radiation damping only

Radiation damping + fluctuation

- (Right figure) 100 samples are taken to evaluate the dynamic aperture with radiation fluctuation.
- Within the lines: particles of 75% of the samples survive.
- Error bars correspond to the range of survival between 50% and 100% of the samples.

Summary for Radiation Fluctuation

- The radiation fluctuation has some impact on the dynamic aperture to reduce the transverse aperture by $\sim 5 \sigma_{x}$ (at $175 \mathrm{GeV}, 100 \%$ survival).
- The resulting DA for 100% survival still looks OK with $\beta_{y}{ }^{*}=2 \mathrm{~mm}$.
- A synchrotron injection now seems necessary for $\beta_{\mathrm{y}}{ }^{*}=1 \mathrm{~mm}$.

errors and vertical emittance tuning

FCC week in Rome (no sextupole fields; only global DFS)_

$$
\begin{aligned}
& \text { alignment } \\
& \text { tolerance } \\
& 5 \rightarrow 20 \mu \mathrm{~m}
\end{aligned}
$$

DFS without + with sextupoles + local dispersion correction in IR

Interaction Region optical functions: FCC-2

- A new location of the crab-waist sextupole will reduce the nonlinearity caused by the interference between final quads, and save the space for them.

	FCC-1	FCC-2
$\beta_{x}[m]$	42	16
$\beta_{y}[m]$	835	2086
$L^{*}[m]$	2	2.9
$L_{q}[m]$	3.6	1.8
$V_{1133}\left[m m^{-3}\right]$	$-4076+45840 \cdot K 3 L$	$-1076+4620 \cdot K 3 L$
$V_{1333}\left[m^{-3}\right]$	$4070-45680 \cdot K 3 L$	$991-4518 \cdot K 3 L$
$V_{111333}\left[m^{-3}\right][\mathrm{PTC})$		-2622
$V_{13333}\left[\mathrm{~m}^{-3}\right][\mathrm{PTC})$		2887

