

CERN alignment sensors

checks, calibrations and infrastructure

Andreas HERTY

April 02, 2009

Andreas HERTY (CERN BE-ABP-SU)

CLIC PRe-ALignment workshop - 1 / 37

checks and calibrations

problems

future

summary

sensors

Andreas HERTY (CERN BE-ABP-SU)

CLIC PRe-ALignment workshop – 2 / 37

sensors	
checks and	
calibrations	

problems

future

summary

field of application at CERN

LHC low-beta magnet monitoring and alignment system
 CLIC studies

00110010
checks and
calibrations

problems

sensors

future

summary

field of application at CERN

- · Monitoring of the ATLAS feet (Bedplates HLS)
- · Monitoring of CMS YB0-HLS with direct link to low-beta magnets
- · vibration measurements CNGS neutrino horn

30113013	
checks and	
calibrations	

problems

concore

future

summary

monitoring sensors in the LHC

- · 112 hydrostatic levelling sensor (HLS)
- · 64 wire position sensor (WPS)
- · 24 distance offset measurement sensor (DOMS)

HLS

WPS

DOMS

characteristics

- · FOGALE nanotech
- · capacitive sensors
- \cdot no stand alone
- · different generations
- · integrated / remote electronics

- \cdot range of up to 10 mm
- · resolution of 0.1 micron
- · signal output 0 10 V
- \cdot power input 15 VDC

261	15013	>

aanaara

checks and calibrations

problems

future

summary

sensor choice for the LHC

- all sensors already used at CERN before
 (LEP, CTF2, calibration laboratory, vibration measurements)
- sensors already tested for long-term and radiation in accelerator environment
- · only tested off-the-shelf sensors available

nevertheless

- · development of remote electronics for HLS
- \cdot cable lengths of up to 30 m

off-the-shelf with major modifications

checks and calibrations

problems

future

summary

checks and calibrations

Nuclear Base Installation

sensors checks and calibrations problems

future

summary

CERN is declared a Nuclear Base Installation

- · Installation Nucléaire de Base (INB)
- · convention with French government (1984 & 2000)

all material exposed to radiation has to be traced

makes it difficult to ship material back to manufacturer

- · for check and calibration
- \cdot for repair

calibration methods, knowledge and infrastructure have to be created at CERN

checks and calibrations

sensors checks and

calibrations

problems

future

summary

checks: at reception

- · validate manufacturer's parameters before installation in the LHC
- · same checks as manufacturer carries out during calibration
- · warm-up, stability and linearity

additional checks: investigate sensor performance

- radiation: total ionisation dose (TID), dose rate dependence (DRD)
- magnetic field: influence to the exposure to magnetic fields
- · on-site check with capacitive references

calibrations

- · additional parameters for the low-beta monitoring system
- · interchangeability and absolute reference
- geodetic interface calibration

warm-up

checks and calibrations

problems

future

summary

warm-up times given by manufacturer

- · WPS and DOMS after 5 min
- \cdot HLS after 48 hrs \rightarrow electrode heated

warm-up

3013013	>
checks	and

concore

calibrations

problems

future

summary

example: WPS warm-up test

warm-up effect shown for WPS on both axes (blue curve) no warm-up after short power cut of 10 min (red curve)

all sensors need 3 hrs to be within \pm 2 micron of final value

maximum warm-up effect observed \pm 6 micron

stability

checks and	
calibrations	

sensors

problems

summary

future

measurements show

· all sensors are within manufacturer's drift limits (\leq 3 micron / month) · DOMS prototypes with problems, method changed manufacturer

stability

3013013
checks and
calibrations
problems
future

summary

aanaara

stability bench allows

- · measurements at fixed distances
- · reference measurements with respect to calibrated distances
- · offset and interchangeability determination

concept also used for

- · warm-up measurements
- \cdot zero and gain point determination of the sensor

linearity

sensors

checks and calibrations

problems

future

summary

FOGALE nanotech provides calibration functions to better than

- \pm 0.4 micron for HLS (3rd order polynomial)
- \pm 0.8 micron for DOMS (4th order polynomial)
- \pm 3.0 micron for WPS (6 x 6 matrix for each axis)

linearity check bench designed to validate calibration within 10 micron

linearity

results

- \cdot non conform sensors detected
- · manufacturer's linearity calibration validated
 - \rightarrow within 10 micron for HLS and DOMS
 - \rightarrow WPS linearity check bench with concept problem

radiation tests

Andreas HERTY (CERN BE-ABP-SU)

CLIC PRe-ALignment workshop - 16 / 37

radiation tests

sensors checks and calibrations problems future

summary

Total Ionisation Dose: sensor

tested HLS and WPS withstand 160 kGy

Total Ionisation Dose: electronics

electronics withstand 500 Gy

this means for the LHC

- · electronics are placed in protected areas
- \cdot long cables between sensor and electronics needed
- · electronics can recover from radiation damage

radiation tests

Dose Rate Dependence on HLS sensors

influence

- · quantified by an experimental formula
- · can be deducted from measurements
- \cdot investigation for WPS and DOMS pending

magnetic field

checks and calibrations
problems
future

sensors

summary

electronics supposed to withstand 0.03 T (FOGALE nanotech)

magnetic field

checks and calibrations

problems

sensors

future

summary

DOMS sensor in field of up to 0.54 T

no infuence on sensor

- · neither cable, nor electronics tested
- · HLS and WPS have to be tested

checks and calibrations

sensors
checks and
calibrations
Calibrations
problems
•
futuro
านเนเษ

summary

interfaces and references

- · additional parameters for the low-beta monitoring system
- · interchangeability, external reference

checks and calibrations

00110010
checks and
calibrations

problems

sensors

future

summary

absolute reference

- \cdot external, absolute reference provided to \pm 50 micron
- \cdot not sufficient for LHC \ldots and particularly not for CLIC studies

solution

- · investigate calibration methods
 - \rightarrow aim: absolute calibration to better than \pm 5 micron
 - \rightarrow HLS concept, validated on manual and automated bench (absolute and geodetic interface)
 - \rightarrow DOMS concept, validation on linearity calibration bench pending
 - \rightarrow WPS concept, bench ready, validation pending (Thomas Touzé)

coordinate-measuring machine available since 2008

capacitive references

00110010	
checks and	
calibrations	

problems

sensors

future

summary

mobile on-site testing device for stability of electronics

- · capacitive references
- \cdot suitable for zero and gain measurements
- · allows check of sensor's stability

follow-up of sensors without dismounting

- · short interruption in data acquisition
- \cdot no complicated radiation protection checks of equipment

checks and calibrations

problems

future

summary

problems

Andreas HERTY (CERN BE-ABP-SU)

CLIC PRe-ALignment workshop – 24 / 37

problems

sensors

checks and calibrations

problems

future

summary

sensors

- mechnically broken cables (HLS/DOMS)
- · electronics components broken (WPS)
- · dust problem (WPS)
- · stability drifts (DOMS)
- sensor frequency drifts (WPS)
- · noise and electro-magnetic interference with other equipment

concept

- · sensors ascociated with cable and electronics
- · absolute calibration

broken cables

S	е	n	S	0	rs

checks and calibrations

problems

future

summary

problem

- · fragile wires in the cable
- · several layers of shielding for primary, capacitive sensor signal

solution

- · cable can be fixed in our workshop
- · calibration will be checked

electronics components broken

sensors

checks and calibrations

problems

future

summary

problem identified

· always same components brake

 \cdot can not be reprocuded

 \cdot source of the problem to be found

WPS frequency drifts

sensors

checks and calibrations

problems

future

summary

WPS has a frequency modulated on the wire for each sensor

- · frequencies range from 3 kHz to 8 kHz
- · sensors adjusted to 100 Hz gap
- · frequency gaps have to be more than 20 Hz
- same frequencies on the same wire create an oscillating signal of one or both sensors involved

observations

- · frequencies drifted with up to 980 Hz
- \cdot range of the drifts 1480 Hz

solution

- · adjustment of frequencies
- \cdot increasing of the gap

checks and calibrations

problems

future

summary

future

Andreas HERTY (CERN BE-ABP-SU)

CLIC PRe-ALignment workshop - 29 / 37

future

sensors
abaaka and
checks and
a a libra ti a ra a

calibrations

problems

future

summary

automated linearity calibration

- · HLS: in operation since 11/2008
- · DOMS: bench validation phase
- · WPS: concept and installation

future

sensors

checks and calibrations

problems

future

summary

radiation tests

- · Single Event-Upset (SEU) tests for sensors and DAQ rack
- · Total Ionisation Dose (TID) tests for DAQ rack

absolute calibration

- · validated for DOMS on automated linearity bench
- · concept and design for WPS (Thomas Touzé)

long-term

- · sensor long-term stability in LHC with radiation
- \cdot in TT1 test facility
- \cdot test benches in the laboratory

compare

· started for HLS with Fermilab, since beginning 2009

checks and calibrations

problems

future

summary

summary

Andreas HERTY (CERN BE-ABP-SU)

CLIC PRe-ALignment workshop - 32 / 37

sensor results: ATLAS

sensors

checks and	
calibrations	

problems

future

summary

installation of the calorimeter

sensor results: ATLAS

USA

US

00103-001

07-11-05

deformation monitored during calorimeter displacement

Andreas HERTY (CERN BE-ABP-SU)

sensor results: LHC

future

summary

pressure change in cryostat causes magnet displacement

observations

- same displacement monitored by HLS and WPS
- · coherent results of both sensor types

summary

|--|

checks and calibrations

problems

future

summary

sensors passed the LHC validation tests

- · linearity and stability
- · total ionisation dose
- · interchangeability and external references
- · additional calibration parameters introduced
- · on site test methods designed

further investigation in

- · long-term behaviour in the LHC
- · radiation influence with TID, test for SEU influence
- · absolute calibration of the sensors
- · magnetic field influences

important for CERN

- \cdot to be able to check / repair sensors due to INB
- · to have check and calibration methods to be confident in measurements

CERN alignment sensors

checks, calibrations and infrastructure

Andreas HERTY

April 02, 2009

Andreas HERTY (CERN BE-ABP-SU)

CLIC PRe-ALignment workshop - 37 / 37