

HLS and WPS at SLAC

Georg Gassner, Franz Peters, Robert Ruland SLAC, Metrology

1

- **WPS and HLS at the BABAR detector (decommissioned system)**
- HLS in SPEAR3 (22 sensors)
- □ WPS and HLS in LCLS undulator hall (136 HLS and 99 WPS)

April 2009 WPS and HLS at SLAC

WPS and HLS in BABAR (1)

- System contained 6 HLS sensors and ~6 WPS sensors from (~2002-2008) to monitor relative positions of magnets and detector
 - HLS
 - First generation BINP sensors,
 - serial data communication
 - Insufficient protection of sensor surface from water
 - Pipe:
 - 30 m pipes
 - 1 and 1 ¹/₂ inch copper pipes, copper works as a anti algae but copper oxidation flakes off
 - WPS
 - Inductive sensors (Wei Wang, Zack Wolf, LCLS-TN-05-27).

WPS and HLS in BABAR (2)

WPS (Wei Wang, Zack Wolf, LCLS-TN-05-27).

- Sensors contain magnetic sensors and an integrated lock-in amplifier.
- 40 kHz Signal on copper beryllium wire
- Vertical and horizontal pickup
- DC signal analyzed at a data acquisition rack
- Resolution <1 micrometer</p>

HLS in SPEAR3 (1)

System contains 22 HLS sensors (in various configurations since 2005)

- Third generation BINP sensors,
 - TCP/IP
 - Power over Ethernet
 - Sensor calibration at SLAC
- 300 m circumference
- 2 inch PVC pipe throughout

HLS in SPEAR3 (2)

Latest results

April 2009 WPS and HLS at SLAC

WPS and HLS in LCLS (1)

April 2009 WPS and HLS at SLAC

WPS and HLS in LCLS (2)

- Stable temperature<0.5 degC
- Low Radiation
- Stability over 1 week period
- Relative motion
 over 140 m distance
 better than <2 µm

April 2009 WPS and HLS at SLAC

WPS and HLS in LCLS (3)

HLS

- 103 capacitive
- **33** ultrasound
- Refill station
- WPS
 - RF inductive

HLS in LCLS (1)

102 Capacitive sensors BINP

- Precision < 1 μm</p>
- Instrument Drift ~1-2 μm / month
- Accuracy < 0.1 % of full Scale</p>
- PoE Ethernet connection
- Calibrated at SLAC
- 33 Ultrasound sensors
 - Precision < 0.1 μm</p>
 - Instrument Drift potentially no drift
 - Accuracy < 0.1 % of full Scale
 - Transducer GE Inspection Technology
 - Electronic Box BINP
- Common
 - Moving Range ±2.5 mm
 - Availability: 10 minutes settling period after movement
- 2 inch CPVC pipe, half filled, 140 m long, 10 min damping time

April 2009 WPS and HLS at SLAC

HLS in LCLS (2)

10 Days of Hydro Leveling System readouts - the tide effect -

April 2009 WPS and HLS at SLAC

10 Days of vertical girder positions by HLS - tide effect eliminated -

April 2009 WPS and HLS at SLAC

HLS in LCLS (4)

Snap shot: Vertical girder positions after 7 days of tracking with HLS

April 2009 WPS and HLS at SLAC

WPM in LCLS (1)

DESY development for the SLAC FFTB experiment (1991 – 1993) Since 2002 adaptation for LCLS by Franz Peters

April 2009 WPS and HLS at SLAC

WPM in LCLS (2)

140 RF sensors

- Resolution < 100 nm in X & Y Direction</p>
- Instrument Drift < 100 nm per day</p>
- Moving Range ±1.5 mm in X & Y Direction
- Accuracy 0.1 % of full Scale
- Availability Permanent, no Interrupts
- Wire
- 140 m gold plated stainless steel wire
- 140 mm wire sag (30kg tension)
- Transverse harmonic frequency of the 138 m wire 1.36 Hz (0.73 sec)
- Wire oscillation, due to surrounding vibrations up to ~ 10 Micrometer
- High resolution needs averaging about 5 to 10 periods 7.3 Sec / Monitor

WPM in LCLS (3)

April 2009 WPS and HLS at SLAC

WPM in LCLS (4)

Georg Gassner gassner@slac.stanford.edu

April 2009 WPS and HLS at SLAC

WPM in LCLS (5)

April 2009 WPS and HLS at SLAC

WPM in LCLS (6)

April 2009 WPS and HLS at SLAC

WPM in LCLS (7)

April 2009 WPS and HLS at SLAC

WPM in LCLS (8)

April 2009 WPS and HLS at SLAC

WPM in LCLS (9)

April 2009 WPS and HLS at SLAC

HLS:

- Third generation capacitive sensors (BINP):
 - Electronics in sensor head
 - Reliable
 - Drift < 2 μ m / week
- Ultrasound sensors (BINP)
 - Electronics not at the sensor
 - Not as reliable (5 out of 33 transducer needed to be replaced so far)
 - In theory no drift
- WPM
 - Inductive System (Wei, Wolf)
 - Electronics next to pick up
 - RF inductive system
 - Very low drift < 1 μm / week</p>
 - No electronics at the sensor itself
 - Max length of 200 m