
TBB integration on GeantV

Andrei Gheata
Joel Fuentes



TBB Components



Task Scheduler

Problem Solution

Oversubscription 

Fair scheduling 

High overhead 

Load imbalance 

Scalability

One TBB thread per hardware thread

Non-preemptive unfair scheduling 

Programmer specifies tasks, not threads 

Work-stealing balances load

Specify tasks and how to create them, rather than threads



• Each thread has its own ready pool, which is a lists of tasks.

• A task goes into each pool when it is allocated.

• Each thread steals tasks from other pools when necessary.



Feeder task
Reads from file a number 

of events. Invokes the 
concurrent basketizer

service

Basketizer(s)
concurrent service
injects full baskets

Transport task
Transports one basket for 

one step

Basket queue
concurrent service

spawn

inject 
particle

Flow control task
event finished? queue 

empty? 

enqueue
basket

input
dequeue basket

spawn
Garbage collector
Forces partially filled 

baskets into the basket 
queue to boost 

concurrency

inspect

spawn

command
dump all your baskets

reuse tracks 
keeping locality

Digitizer task
This is a user task 
working on “hits” 

data

Scoring
This is a user task 
reading track info 

and creating ”hits”

I/O task
Write data (hits, 

digits, kinematics) on 
disk

task approach of GeantV
Transport task may be 
further split into subtasks 

spawnqueue empty?

event finished?

event finished?



Feeder task
Reads from file a number 

of events. Invokes the 
concurrent basketizer

service

spawn

First step: Feeder Task

Transport Threads

(original transport thread)

Basketizer(s)
concurrent service
injects full baskets

Basket queue
concurrent service

inject 
particle

enqueue
basket

input
dequeue basket



Second step: Transport Task

Basketizer(s)
concurrent service
injects full baskets

Transport task

Basket queue
concurrent service

spawn

inject 
particle

enqueue
basket

input
dequeue basket

Feeder task
Reads from file a number 

of events. Invokes the 
concurrent basketizer

service



Third step: Flow Control Task

Feeder task
Reads from file a number 

of events. Invokes the 
concurrent basketizer

service

Basketizer(s)
concurrent service
injects full baskets

Transport task
Transports one basket for 

one step

Basket queue
concurrent service

spawn

inject 
particle

Flow control task
event finished? queue 

empty? 

enqueue
basket

input
dequeue basket

spawn

inspect

event finished?

Initial task



Some issues for migrating to tasks

• Thread ID integration
• Now we have static threads with unique id’s, how to deal with this in task 

mode

• Use of Thread ID for tasks. 
• Advantage: locality. 

• Disadvantage: It may cause work-stealing to fail.

• At least the Feeder and Transport Tasks use data accessed by Thread ID.

• Feeder task: only one task at a time

• Assignation of new tasks to be executed in same thread



Affinity methods on TBB

These methods enable optimizing for cache affinity. They enable you 
to hint that a later task should run on the same thread as another task 
that was executed earlier. To do this:

• In the earlier task, override note_affinity(id) with a definition that 
records id.

• Before spawning the later task, run set_affinity(id) using the id 
recorded in step 1,


