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TBB Components



Task Scheduler

Problem Solution

Oversubscription 

Fair scheduling 

High overhead 

Load imbalance 

Scalability

One TBB thread per hardware thread

Non-preemptive unfair scheduling 

Programmer specifies tasks, not threads 

Work-stealing balances load

Specify tasks and how to create them, rather than threads



• Each thread has its own ready pool, which is a lists of tasks.

• A task goes into each pool when it is allocated.

• Each thread steals tasks from other pools when necessary.



Feeder task
Reads from file a number 
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concurrent basketizer
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Digitizer task
This is a user task 
working on “hits” 

data

Scoring
This is a user task 
reading track info 

and creating ”hits”

I/O task
Write data (hits, 

digits, kinematics) on 
disk

task approach of GeantV
Transport task may be 
further split into subtasks 
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Second step: Transport Task
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concurrent service
injects full baskets
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Third step: Flow Control Task
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Some issues for migrating to tasks

• Thread ID integration
• Now we have static threads with unique id’s, how to deal with this in task 

mode

• Use of Thread ID for tasks. 
• Advantage: locality. 

• Disadvantage: It may cause work-stealing to fail.

• At least the Feeder and Transport Tasks use data accessed by Thread ID.

• Feeder task: only one task at a time

• Assignation of new tasks to be executed in same thread



Affinity methods on TBB

These methods enable optimizing for cache affinity. They enable you 
to hint that a later task should run on the same thread as another task 
that was executed earlier. To do this:

• In the earlier task, override note_affinity(id) with a definition that 
records id.

• Before spawning the later task, run set_affinity(id) using the id 
recorded in step 1,


