Last year experiences at CERN with FPC and future perspectives

WWFPC #02, CERN, Geneva, 12-13 July 2016

eric.montesinos@cern.ch

WWFPC #02, CERN, Geneva, 12-13 July 2016

Outline

FPC at CERN

- FPC Program at CERN
- Frequencies & Power levels
- Resources

Reporting on current FPC projects at CERN

- Linac4
- SPL
- Crab Cavities
- LIU SPS 200

Difficulties encountered in the past years

Conditioning processes

Future programs

FPC program at CERN

WWFPC #02, CERN, Geneva, 12-13 July 2016

Frequencies & Power levels

Tested or Operation	Frequency [MHz]	Operation	TW [kW]	SW [kW]
SPS 2	200	CW	500	-
LHC	400	CW	550	575
ESRF-SOLEIL-APS	352	CW	300	200
SPL 1.0 – SPL 2.0	704	2 ms – 50 Hz	1000-1000	600-1000
Linac 4	352	2 ms – 1 Hz	-	900
Design & construction				
Crab	400	CW	100	100
LIU 200	200	CW	1000	-
LIU 800	800	CW	250	-
SPL 3.0	704	2 ms – 50 Hz	1500	1500
LHC 2	400	CW	600	600
LHC crab	400	CW	100	100

Activities	5.3 FTE year
RF Design	0.2
Mechanical Design	1.8
Raw material	0.05
External machining pilot	0.5
Internal machining	1.0
Surface treatments	0.1
Brazing	0.2
Titanium sputtering	0.1
BE welding	0.1
Metrology	0.05
Assembly	0.5
Vacuum tests	0.1
RF Conditioning	0.5
Clean room assembly	0.1

Activities	5.3 FTE year
RF Design	0.2
Mechanical Design	1.8
Raw material	0.05
External machining pilot	0.5
Internal machining	1.0
Surface treatments	0.1
Brazing	0.2
Titanium sputtering	0.1
BE welding	0.1
Metrology	0.05
Assembly	0.5
Vacuum tests	0.1
RF Conditioning	0.5
Clean room assembly	0.1

Activities	5.3 FTE yea
RF Design	0.2
Mechanical Design	1.8
Raw material	0.05
External machining pilot	0.5
Internal machining	1.0
Surface treatments	0.1
Brazing	0.2
Titanium sputtering	0.1
BE welding	0.1
Metrology	0.1
Assembly	0.5
Vacuum tests	0.1
RF Conditioning	0.5
Clean room assembly	0.1

Activities	5.3 FTE yea
RF Design	0.2
Mechanical Design	1.8
Raw material	0.05
External machining pilot	0.5
Internal machining	1.0
Surface treatments	0.1
Brazing	0.2
Titanium sputtering	0.1
BE welding	0.1
Metrology	0.1
Assembly	0.5
Vacuum tests	0.1
RF Conditioning	0.5
Clean room assembly	0.1

Activities	5.3 FTE year
RF Design	0.2
Mechanical Design	1.8
Raw material	0.05
External machining pilot	0.5
Internal machining	1.0
Surface treatments	0.1
Brazing	0.2
Titanium sputtering	0.1
BE welding	0.1
Metrology	0.05
Assembly	0.5
Vacuum tests	0.1
RF Conditioning	0.5
Clean room assembly	0.1

Activities	5.3 FTE year
RF Design	0.2
Mechanical Design	1.8
Raw material	0.05
External machining pilot	0.5
Internal machining	1.0
Surface treatments	0.1
Brazing	0.2
Titanium sputtering	0.1
BE welding	0.1
Metrology	0.05
Assembly	0.5
Vacuum tests	0.1
RF Conditioning	0.5
Clean room assembly	0.1

Activities	5.3 FTE year
RF Design	0.2
Mechanical Design	1.8
Raw material	0.05
External machining pilot	0.5
Internal machining	1.0
Surface treatments	0.1
Brazing	0.2
Titanium sputtering	0.1
BE welding	0.1
Metrology	0.05
Assembly	0.5
Vacuum tests	0.1
RF Conditioning	0.5
Clean room assembly	0.1

Activities	5.3 FTE year
RF Design	0.2
Mechanical Design	1.8
Raw material	0.05
External machining pilot	0.5
Internal machining	1.0
Surface treatments	0.1
Brazing	0.2
Titanium sputtering	0.1
BE welding	0.1
Metrology	0.05
Assembly	0.5
Vacuum tests	0.1
RF Conditioning	0.5
Clean room assembly	0.1

Activities	5.3 FTE year
RF Design	0.2
Mechanical Design	1.8
Raw material	0.05
External machining pilot	0.5
Internal machining	1.0
Surface treatments	0.1
Brazing	0.2
Titanium sputtering	0.1
BE welding	0.1
Metrology	0.05
Assembly	0.5
Vacuum tests	0.1
RF Conditioning	0.5
Clean room assembly	0.1

Linac4 windows

1 MW @ 352 MHz - 2 ms - 1 Hz (2 kW average) upgradable to 2 ms - 50 Hz (100 kW average)

Initially we asked companies to build it

- Too expensive
- Too long delivery delays
- Too 'big' devices

We designed a compact and quite simple solution

- One large disk window
- Helicoflex seals
- Two WG2300 to cylindrical transitions
- Transistion 'coolable' with air or water if needed

Linac4 windows

1 MW @ 352 MHz - 2 ms - 1 Hz (2 kW average) upgradable to 2 ms - 50 Hz (100 kW average)

Initially we asked companies to build it

- Too expensive
- Too long delivery delays
- Too 'big' devices

We designed a compact and quite simple solution

- One large disk window
- Helicoflex seals
- Two WG2300 to cylindrical transitions
- Transistion 'coolable' with air or water if needed

Linac4 copper for ceramic

Linac4 preparation of brazing

Linac4 ceramic brazing

Linac4 Stainless steel + copper ring

Linac4 Stainless steel + copper ring

WWFPC #02, CERN, Geneva, 12-13 July 2016

eric.montesinos@cern.ch

Linac4 windows Ti sputtering

At cern we apply TiOx sputtering against multipactor

We unsuccessfully tried Cr2O3 paint

- No proof of better result
- No proof of worse result
- No time to investigate further more
- Any information is welcomed

No sputtering at all

- I heard about some FPC with NO sputtering being successful
- Any information is welcomed

Linac4 windows waveguide flanges

Linac4 windows waveguide flanges

Linac4 windows waveguide flanges

Linac4 windows

Linac4 windows

Charles is completing the RF processing program

By the end of July 2016, we should deliver the last 4 windows

Main difficulties

Helicoflex faces on the WG flanges have been very difficult to prepare

We had to work them several times before being ok

Rectangular to circular flanges have made a 'banana' effect, and a very careful assembly process had to be applied

SPL FPC

RF Characteristics		Technical Choices	
f ₀	704.4 MHz	Single window coupler	
	1000 kW pulsed	Fixed coupler	
Power levels 0.4 + 1.2 + 0.4 = 2.0 ms 50 Hz (20 ms) 100 kW average	With a Double Walled Tube		
	Mounted in clean room with its double walled tube		
Cavity design gradient	19-25 MV/m	Vertically below the cavity and will be a support for the	
Q _{ext} of input coupler	1.2 x 10 ⁶	cavity (first time worldwide)	
Input line Ø	100 / 43.5 mm = 50 Ω (from the cavity design)	With a HV DC biasing capacitor Air cooled	
Waveguides	WR 1150		

Please refer to SLHiPP#4 workshop : CERN SPL Fundamental Power Coupler Progress report https://indico.esss.lu.se/event/139/session/5/contribution/19

SPL FPC

2008/2009

- First SPL Collaboration meeting
- Proposal of four possible designs

2010

- Design review with world wide coupler experts, Two designs validated
- ANL-APS: Ali Nassiri
- DESY: Wolf-dietrich Moeller
- Fermilab: Mark Champion & Sergey Kazakov
- Jlab: Mircea Stirbet

2011

• 3D printing & Construction

2012

- First tests & first difficulties
- Copper peeling on Double walled Tube (DT)

2013

- High peak power difficulties in SW tests
- Arcing regarding some reflected power phases
- Not found with simulations
- New test program
- First pair of Disk couplers ok

2014

- Bolts/nuts & vacuum gasket difficulties
- Still not ok with cylindrical windows
- May: Second pair of Disk couplers ok

2015

- SPL 3.0 & SPL 3.1 Design (CW 1.5 MW TW + SW)
- Launch SPL 3.1 Construction

2016

• SPL 3.1 under construction

SPL 1.0 & SPL 2.0

Cylindrical window Coupler Both designs will have the same

Double walled tube

Matching waveguide without doorknob

Contacts ring including DC capacitor

Interface to cryomodule flange & RF + vacuum gasket

Disk window Coupler

SPL 1.0 Power limitations

Tested at CEA Saclay (thanks again for the fruitful collaboration)

1 MW TW ok

Emax limitations with SW to 650 kW Arcing between the two copper rings

SPL 2.0 power limitations

We had arcing in the air side when reaching 1 MW full reflection with few SW phases

With a piece of paper in the waveguide, we were able to localize the phenomena as initiated close to the ceramic window

SPL 3.0 & SPL 3.1

All devices have been produced, we are now in the construction process

Tests will be performed at CERN with a resonant ring

Crab Cavities

100 kW CW @ 400 MHz

2 DQW + 2 RFD by end of May 2016 1 DQW + 1 RFD by end 2016

Please refer to HL-LHC WP4 (Crab Cavities) : SPS Cryo-module Engineering Review <u>https://indico.cern.ch/event/435319/contributions/1081895/</u>

Test box by October 2016 Assembly in clean room by end 2016 Start RF processing beginning 2017 Two first couplers ready by April 2017

Crab Cavities

Crab Cavities FPC windows

Crab Cavities FPC Hooks

Crab Cavities FPC Antennas

Crab Cavities FPC WG from a single block

Crab Cavities FPC status

2 needed, 3 done

4 needed, 4 done, 2 additional to come

4 needed, 8 done

2 needed, 2 done

2 needed, 4 done

2 needed, 4 done

2 needed, 4 done

Crab Cavities FPC Status

Since end of June 2016

- Two DQW FPC ready for RF
- Two RFD FPC ready for RF

Crab Cavities Test box

Started simulations with a PhD we got sick end of last year

New PhD started this Spring

- Same Test box for both couplers
- Outer coaxial line with different lengths

As delivery delay of Stainless steal is incredibly long (6 months), we will also try a test box in Aluminium (comment, advice?)

Crab Cavities Test box

With present FPC design two three sections cavities do not fit in-between two quadrupoles !

WWFPC #02, CERN, Geneva, 12-13 July 2016

eric.montesinos@cern.ch

WWFPC #02, CERN, Geneva, 12-13 July 2016

WWFPC #02, CERN, Geneva, 12-13 July 2016

eric.montesinos@cern.ch

Four ceramics have been delivered

We are building a simple transmission line to test that the principle is ok

I would like to try 'Kyocera' ceramic in order to skip the TiOx sputtering process

Please refer to SLHiPP#6 workshop : Coupler conditioning at CERN

https://indico.esss.lu.se/event/528/session/2/contribution/15

Vacuum gauges reading used for

- Interlocking the RF switch if vacuum pressure value exceeds maximum ratings
- (5 x 10⁻⁷ mbar based on experience)
- Vacuum analog loop to reduce the RF drive in case of vacuum outgassing

It is important to keep the repetition rate low enough to allow enough time to the vacuum gauge to detect the pressure rise

This allows not to stop the system, only few pulses are missed

In order to speed-up the process, we automated it

A second loop, computer controlled, was added

The CPU is also monitoring the vacuum pressure, and also acts in case of outgassing

Its main task is to safely increase as quick as possible the RF power level

Since we developed it, we provided the system to several places over the world: ESRF, SOLEIL, APS, BNL, LAL, KEK, and of course to all our recent CERN couplers: SPS200, SPS800, LHC, SPL, Linac4 For sure, it is available to whoever would like to have it

Test bench: one versus two test boxes

Test bench: one versus two test boxes

CERN

RF Conditioning

Total duration 2 windows + 2 windows = **64 days**

Exchange Windows 2 days	Processing 2 windows 30 days		S Exchange Windows 2 days	Processing 2 windows 30 days		
	Preparation next 2 windows, 5 days	Bake out 5 days		Preparation next 2 windows, 5 days	Bake out 5 days	

Total duration 4 windows = **37 days**

Four windows in series is much faster than two plus two windows

New FPC area

In addition to SM18 clean room area

Building 864 FPC zone

65 m2 for pre-assembly ('grey room')

- 65 m2 for RF conditioning
- One IOT
- Solid State Power Amplifiers
- Resonant rings
- Loads
- Variable short circuits

Wesgo

Friatec

Kyocera

LEP2 Al2O3 99.6%

MoMn metalized by the ceramic supplier

Silver plated

Counter piece (Copper - Titanium - Kovar) Ni plated

Wire in molybdenum if needed

TiOx sputtered

Short pulses R&D

Processing time, short pulses is the most demanding step

Courtesy of Y. Yamamoto, A. Yamamoto, T. Matsumoto, E. Kako (KEK)

recently a standard to standard and standard and the standard st	
SLHIPP-6, Lockcrott Institute, enc.montesinosi9.cem.ch	

Processing time, short pulses is the most demanding step

Example of LHC coupler conditioning at test bench

Processing time, short pulses is the most demanding step

LCLS-II Couplers processing, courtesy of C. Adolphsen (SLAC)

23 May 2016 SLHiPP-6, Cockcroft Institute, eric.montesinos@cern.ch 21

How to improve the first pulse length processing time?

23 May 2016

19

WWFPC #02, CERN, Geneva, 12-13 July 2016

Conclusion

We now have knowledge on

- Design
- Construction (many various processes with various experts that have constructed their experience on many other projects than FPC)
- Clean room tooling and assembly
- Test boxes
- RF Processing
- Integration in labs or machines

Even if we still have a lot to learn, whenever you want to share, please do not hesitate, it will be our pleasure to try to help and to always learn more !

