

Kirk

Recent Progress of STF Coupler R&D for the ILC

Akira Yamamoto, Kirk, Charles Julie, Eric Montesino, Toshihiro Matsumoto, Eiji Kako

12/Jul/2016

- ILC-TDR
- Motivation
- RF design by HFSS
- Fabrication processes
- Incoming inspection
- Assembly work in clean room
- Low power test / Adjustment of inner conductor for lowest S_{11}
- High power test at test bench
- Inspection for heating area
- More inspection / Identification of cause for heating
- Summary / Future plan

• ILC-TDR

- Motivation
- RF design by HFSS
- Fabrication processes
- Incoming inspection
- Assembly work in clean room
- Low power test / Adjustment of inner conductor for lowest S_{11}
- High power test at test bench
- Inspection for heating area
- More inspection / Identification of cause for heating
- Summary / Future plan

ILC-TDR (for Power coupler specification)

These figures are shown on Page 35 in ILC-TDR Vol.3 Part-II.

- ILC-TDR
- Motivation
- RF design by HFSS
- Fabrication processes
- Incoming inspection
- Assembly work in clean room
- Low power test / Adjustment of inner conductor for lowest S_{11}
- High power test at test bench
- Inspection for heating area
- More inspection / Identification of cause for heating
- Summary / Future plan

In view of "Plug compatibility", the use of STF-II coupler has to be evaluated for 40mm diameter.

What is the most simple way for this change?

Input coupler performance in S1-G

Design of 40mm STF2 Coupler

- ILC-TDR
- Motivation
- **RF design by HFSS**
- Fabrication processes
- Incoming inspection
- Assembly work in clean room
- Low power test / Adjustment of inner conductor for lowest S_{11}
- High power test at test bench
- Inspection for heating area
- More inspection / Identification of cause for heating
- Summary / Future plan

RF Design by HFSS

\blacklozenge Stroke of Q_L

◆Full simulation for test stand model

◆Full simulation for "Real" bellows model

Stroke of Q_L by full model

Result of Q_L stroke simulation

Pattern 1

Pattern 2

Pattern 3

Comparison of two types of ceramics

12/Jul/2016

HA95/HA95 (46.0mm)

窓をAHIOOAに変更する度に、突き出し量が増加し ていく傾向があることが分かる。Cold側よりも Warm側の影響の方が大きいようである。

HA95/AH100A (47.5mm)

AH100A/AH100A (51.5mm)

Full Test bench with "real" bellows model

実際のベローズ付きの完全なテストベンチモデルで計算する。ただし、テフロン板は入っていない。

Comparison of w/ and w/o bellows

12/Jul/2016

- ILC-TDR
- Motivation
- RF design by HFSS
- Fabrication processes
- Incoming inspection
- Assembly work in clean room
- Low power test / Adjustment of inner conductor for lowest S_{11}
- High power test at test bench
- Inspection for heating area
- More inspection / Identification of cause for heating
- Summary / Future plan

Copper plating condition for STF-2 couplers

Copper plating condition for 40mm STF coupler Same condition as couplers installed into STF-2 CM2a \$77<u>7777</u> 25 µm / Nickel strike Warm part 25 µm / Gold strike 25 µm / Gold strike 10 µm / Gold strike Cold part • • • • -0-

Specification of 40mm Couplers

Coupler (TOSHIBA)	Product No.	Serial No.	Ceramic company	Ceramic color	Ceramic coating	Plating (for outer/inner conductor)
Warm #1, #2 (normal)	E42130	14L001 14L002	NGK/NTK	White	TiN	Copper
Cold #1, #2 (normal)	E42130	14L001 14L002	NGK/NTK	White	TiN	Copper
Cold #3, #4 (new)	E42130	14L003 14L004	KYOCERA	Gray	free	Copper

Reference on HA95 Ceramic (Kijima-san's Paper)

KEKB method

As fabricated (No-coating) \downarrow TiN coating (10nm) \downarrow Brazing @800°C \downarrow O₃ rinsing

STF method

As fabricated (No-coating) ↓ TiN coating (10nm) ↓ Brazing @800°C ↓ Ultra-pure water rinsing

We need to measure SEE of AH100A in various steps.

What's the difference among three rinsing processes? O₃ rinsing (KEKB) Ultra-pure water rinsing (STF) Ultrasonic rinsing (EU-XFEL)

We will also try three rinsing processes in STF.

- ILC-TDR
- Motivation
- RF design by HFSS
- Fabrication processes
- Incoming inspection
- Assembly work in clean room
- Low power test / Adjustment of inner conductor for lowest S_{11}
- High power test at test bench
- Inspection for heating area
- More inspection / Identification of cause for heating
- Summary / Future plan

Delivery items

Big problem (To be sent back to TOSHIBA) \rightarrow But, no time to refabricate \rightarrow Go forward

Silver trace existed after brazing process \rightarrow No problem

Some black stains existed (maybe after chemical process) \rightarrow No problem

Waveguide system is fabricated by Furukawa C&B. They had Good copper plating.

- ILC-TDR
- Motivation
- RF design by HFSS
- Fabrication processes
- Incoming inspection
- Assembly work in clean room
- Low power test / Adjustment of inner conductor for lowest S_{11}
- High power test at test bench
- Inspection for heating area
- More inspection / Identification of cause for heating
- Summary / Future plan

Ultra-pure water rinsing \rightarrow assembly work in Class10 \rightarrow Leak check \rightarrow Low power test \rightarrow Baking

Rinsing cold part by ultra-pure water

Drying cold part in Class 10

Head of inner conductor before/after rinsing

Never changed after ultra-pure water rinsing

Rinsing waveguide by ultra-pure water/ultra-sonic

Drying waveguide by ion gun in Class 10

Rinsing vacuum parts by ultra-pure water/ultra-sonic

12/Jul/2016

Rinsing vacuum parts by ultra-pure water/ultra-sonic

Drying vacuum parts by ion gun

Status in Class 10 at 1st day

Cleaning up warm part by air blow

Rinsing bolt/nut by ultra-pure water/ultra-sonic

Cleaning up warm part by ion gun

Putting bolt/nut in order

Status in Class 10 at 1st day

Putting indium wire

Connection of waveguide

Attachment of metal valve/vacuum gauge

Hexagonal seal

We used Hexagonal seal for the first time!

Cleaning up/jointing cold part

Jointing cold part

Torque: $7 \rightarrow 9 \rightarrow 11 \rightarrow 13$ N•m (two turns)

Attachment of electron probe

Leak check setup

Attachment of bellows pipe

Warm parts are connected each other for common vacuum.

Leak check for warm part

Leak rate : 8.9 x 10⁻¹¹ [Pa•m³/sec] (before baking) Back Ground : 8.2 x 10⁻¹¹ [Pa•m³/sec]

Pumping/Baking

100°C for 48 hours

Outline

- ILC-TDR
- Motivation
- RF design by HFSS
- Fabrication processes
- Incoming inspection
- Assembly work in clean room
- Low power test / Adjustment of inner conductor for lowest S₁₁
- High power test at test bench
- Inspection for heating area
- More inspection / Identification of cause for heating
- Summary / Future plan

Attachment of doorknob

Low power test by N.A.

Adjustment of inner conductor

Comparison between Real data and HFSS

They are consistent or quite different each other?

There maybe some fabrication errors or unknown reasons.

12/Jul/2016

Outline

- ILC-TDR
- Motivation
- RF design by HFSS
- Fabrication processes
- Incoming inspection
- Assembly work in clean room
- Low power test / Adjustment of inner conductor for lowest S_{11}
- High power test at test bench
- Inspection for heating area
- More inspection / Identification of cause for heating
- Summary / Future plan

Goal for each RF condition at test bench

RF Pulse Width [µsec]	RF Repetition Rate [Hz]	Max. Power [kW]	
10	5	1200	
30	5	1200	
100	5	1200	
500	5	1200	
1500 (RDR spec.)	5 800		
1650 (TDR spec.)	5	800	
Max. power for above 1500µsec depends on vacuum level			

Interlock List in High Power Test of 40mm Input Coupler

I/L Item	mps #	Threshold
Cooling water I/L	mps 60	
Arc I/L #1 (up W.G.)	mps 90	2000 / 6500
Arc I/L #2 (upstream)	mps 91	2000 / 7250
Arc I/L #3 (downstream)	mps 92	2000 / 7480
Arc I/L #4 (down W.G.)	mps 93	2500 / 6550
Vacuum I/L	mps 103	2 x 10 ⁻⁴ [Pa]
VSWR V3 I/L	mps 100	P _{for} < 1.3 [MW] @upstream
VSWR V3 I/L	mps 101	P _{back} < 10 [kW] @upstream
VSWR V3 I/L	mps 102	VSWR < 1.4 @upstream
VSWR V4 I/L	mps 110	P _{for} < 1.3 [MW] @downstream
VSWR V4 I/L	mps 111	P _{back} < 10 [kW] @downstream
VSWR V4 I/L	mps 112	VSWR < 1.4 @downstream

$$VSWR = \frac{1 + \sqrt{\frac{P_{backward}}{P_{forward}}}}{1 - \sqrt{\frac{P_{backward}}{P_{forward}}}} \qquad VSWR = 1.2 \Rightarrow \frac{P_{backward}}{P_{forward}} \cong 0.01$$

$$VSWR = 1.4 \Rightarrow \frac{P_{backward}}{P_{forward}} \cong 0.028$$

$$VSWR = 2.0 \Rightarrow \frac{P_{backward}}{P_{forward}} \cong 0.111$$

70

Connection to waveguide system Pumping restarts (coupler has been under vacuum after assembly work in clean room)

30 µsec / 5 Hz

1650 µsec / 5 Hz

One-day trend graph for coupler conditioning (normal ceramic)

Pulse width : 10 [µsec] Rep. frequency : 5 [Hz]

Log Trend of 40Φ Input Coupler Conditioning ('16/1/27) Log Trend of 40Φ Input Coupler Conditioning ('16/1/27) Log Trend of 40Φ Input Coupler Conditioning ('16/1/27)

12/Jul/2016

12/Jul/2016

One-day trend graph for coupler conditioning (normal ceramic)

One-day trend graph for coupler conditioning (normal ceramic)

Scattered Plot of 40 Φ Input Coupler Conditioning ('16/2/5) Scattered Plot of 40 Φ Input Coupler Conditioning ('16/2/5)

Scattered Plot of 40 Input Coupler Conditioning ('16/2/5) Scattered

Scattered Plot of 40Φ Input Coupler Conditioning ('16/2/5)

History of RF Conditioning for Normal ceramic coupler

Date	Content	Result					
12/Jan	Preparation work						
15/Jan	Klystron #2 ON, RF ON, Power meter setting	27.9 kW @10µsec/5Hz					
18/Jan		43.0 kW @10µsec/5Hz					
19/Jan		61.0 kW @10µsec/5Hz					
20/Jan		149 kW @10μsec/5Hz					
21/Jan	Arc I/L ON	207 kW @10μsec/5Hz					
22/Jan		312 kW @10µsec/5Hz					
25/Jan		500 kW @10μsec/5Hz					
26/Jan		861 kW @10μsec/5Hz					
27/Jan	10µsec/5Hz finished	1200 kW (1hour keep) @10µsec/5Hz					
28/Jan		1211 kW (1hour keep) @30µsec/5Hz					
29/Jan	30µsec/5Hz finished	1215 kW @100µsec/5Hz					
1/Feb	100µsec/5Hz finished	1216 kW (1hour keep) @100µsec/5Hz, 604 kW @500µsec/5Hz					
2/Feb	500µsec/5Hz finished	1200 kW (1hour keep) @500µsec/5Hz					
3/Feb	Fan x 2 ON	818 kW (1hour keep) @1500µsec/5Hz					
4/Feb	Fan x 4 ON, 1500µsec/5Hz finished	607 kW @1650µsec/5Hz					
5/Feb		708 kW (1hour keep) @1650µsec/5Hz					

Summary of Conditioning time for each parameter (Φ 40mm No, 1 & 2)

$\Delta t \ [\mu sec]([Hz])$	Pf1 MAX [kW]	net time [h:m]	keep Pf1 Max[kW]	Keep time @Pf max [h:m]	Elapsed time [h:m]
10 (5)	1200	58:52	1200	1:00	61:12
30 (5)	1200	7:03	1200	1:00	8:03
100 (5)	1200	6:11	1200	1:00	6:11
500 (5)	1200	8:01	1200	1:00	11:23
1500 (5)	800	6:46	800	1:00	7:32
total	-	86:53	-	-	94:21
1650(5)	700	5:18	700	1:00	7:14
total	-	92:11	_	_	101:35

We moved to RF conditioning for new ceramic couplers, but, before that, we introduced two useful devices from CERN

Auto-conditioning Module by CERN

We connected RF_{in}, RF_{out} and Vacuum output (only one ch.) to this module. Mr. Charles Julie came to KEK, and helped us very well!

Vacuum Distributor by CERN

Good collaboration between CERN and KEK (Thank you very much again)

Vacuum distributor follows up the worse vacuum well! But, there is a little bit difference between actual and worse vacuum.

One-day trend graph for coupler conditioning (new ceramic)

Comparison of RF Conditioning History for Both Couplers

Date	Result for Normal Ceramic	Date	Result for New Ceramic
18/Jan	43.0 kW @10µsec/5Hz	24/Feb	56.0 kW @10μsec/5Hz
19/Jan	61.0 kW @10µsec/5Hz	25/Feb	66.0 kW @10µsec/5Hz
20/Jan	149 kW @10µsec/5Hz	26/Feb	156.0 kW @10μsec/5Hz
21/Jan	207 kW @10µsec/5Hz	29/Feb	342.0 kW @10μsec/5Hz
22/Jan	312 kW @10µsec/5Hz	1/Mar	930.0 kW @10µsec/5Hz
25/Jan	500 kW @10µsec/5Hz	2/Mar	1200.0 kW @10µsec/5Hz 1200.0 kW @30µsec/5Hz
26/Jan	861 kW @10µsec/5Hz	3/Mar	1200.0 kW @100μsec/5Hz 1100.0 kW @500μsec/5Hz
27/Jan	1200 kW (1hour keep) @10µsec/5Hz	4/Mar	1200.0 kW @500µsec/5Hz 483 kW @1500µsec/5Hz
28/Jan	1211 kW (1hour keep) @30µsec/5Hz	7/Mar	
29/Jan	1215 kW @100µsec/5Hz	8/Mar	
1/Feb	1216 kW (1hour keep) @100µsec/5Hz, 604 kW @500µsec/5Hz	9/Mar	Ilpdate!
2/Feb	1200 kW (1hour keep) @500µsec/5Hz	10/Mar	NOUT
3/Feb	818 kW (1hour keep) @1500µsec/5Hz	11/Mar	
4/Feb	607 kW @1650µsec/5Hz	14/Mar	
5/Feb	708 kW (1hour keep) @1650µsec/5Hz	15/Mar	

Outline

- ILC-TDR
- Motivation
- RF design by HFSS
- Fabrication processes
- Incoming inspection
- Assembly work in clean room
- Low power test / Adjustment of inner conductor for lowest S_{11}
- High power test at test bench
- Inspection for heating area
- More inspection / Identification of cause for heating
- Summary / Future plan

Daily Status of conditioning (4/Mar)

Pulse width : 500→1500 [µsec] Repetition rate : 5 [Hz]

90

During 1.5ms RF conditioning, cold vacuum was suddenly worse. Then, we could not do power rise more.

We observed unusual heating around tapered pipe of cold part #3. It never changed even in lower RF duty cycle.

After disassembly of coupler, we didn't find anything. 12/Jul/2016

Daily Status of conditioning (23/Mar) Pulse width : 500 [µsec] Repetition rate : 5 [Hz]

⁽detailed inspection by T-mapping)

Unusual heating occurred at same position again after reversing coupler test stand!

Daily trend graph @8/Apr

500µsec/5Hz

Heating at Cold Part w/ New Ceramic Coupler

- ◆ Only new ceramic coupler
- Only tapered pipe at cold part
- No changed after long RF conditioning
- Many electron emission and worse vacuum as heating occurred
- ◆ No worse vacuum at warm part

We asked to TOSHIBA, "What's differences between them?" ↓ Their answer is... **"Both couplers were fabricated by same method"**

	Test Series #	Upstream coupler	Downstream coupler	Heating location		
	1 Cold #1 (normal)		Cold #2 (normal)	No heating, but no monitoring		
	2 Cold #3 (new)		Cold #4 (new)	Cold #3 heating, Cold #4 no heating		
	3	Cold #4 (new)	Cold #3 (new)	Cold #3 heating, Cold #4 no heating		
	4	Cold #4 (new)	Cold #2 (normal)	Cold #4 heating, Cold #2 no heating		
	5	Cold #2 (normal)	Cold #4 (new)	Cold #4 heating, Cold #2 no heating		
2/In1/1	6	Cold #3 (new)	Cold #4 (new)	Cold #3 heating, Cold #4 no heating		

Detailed inspection for unusual heating in Cold #3

2		Temperature					×	2			_ [
Temperature Time Range: 30r			min 🔻	2016/	03/23 13:4	42:12	Coupler		2016/0	3/23 13:42	
40.00 40.00	40.00 40.00 40	40.00	40.00 40.00	40.00	4.00	40.00	40.00			┐┌温度—	
			13:42:11					Coupler Upstream Pf:	394.91kW	#1:	23.65°
				remper	rature#1		23.50°C	Coupler Unstream Phy	20 32KW	#2:	27.40°
		الألوافيد فاستنا أخاصهما فادر ورعار فالمارد	Line of the state	Temper	rature#2		27.70°C	Coupler opstream Pb.	29.5287		20.500
	LILLING AND AND A THE REPORT				rature#3		21.25°C	Coupler Downstream Pf:	310.60kW	#3:	20.50%
	and the second	on the construction of the second second second	a shirter ships the section is being the thereit		rature#4		22.90°C			#4:	23.20°
	and the second	white the section with the Mit	المريطية ويتقفر والمقورة الجويط أرجسون		rature#5		32.80°C	Vacuum		#5.	33 10%
	and the second se	an an an Antonia an Antonia an Antonia	Allendaria de la sere a la sere a		rature#0		24.25 C	Cold:	4.47E-5Pa	#31	55.10
and the second	And the state of t	de the standard and a state of the second state of the	Applift girlings girleft an frankriger att finde		rature#9		24.55°C			#6:	24.55°(
				Temper	rature#9		30.70°C	warm:	5.69E-5Pa	#7:	36.85°(
and the state of the	AND A CONTRACTOR OF A DAMAGE AND A DAMAGE		Allow the substitution of	Temper	rature#10		22.45°C			#0.	24 10%
	CONTRACTOR AND INCOMENTATION OF THE ADDRESS OF THE OWNER OF	difference in a second a factor of the	 Second and set statement estiles as all 	Temper	rature#10		26.20°C	Arc] #0:	24.10 (
	The start burner is a start of the start of		a na antista da antist		rature#12		25.75°C	Arc#1:	12.160mV	#9:	30.25°(
				- Temper	44410#12		25.75 C	A	2 (27-2)/	#10:	21.70°0
								Arc#2:	-3.627mV		25.754
13:18:00	13:24:00	13:30:00	13:36:00					Up:	87.467mV	#11:	25.75°C
15.00 15.00	15.00 15.00 15	00 15.00	15.00 15.00	15.00	15.00	15.00	15.00		20.007-01	#12:	25.15°(
		⊯ div	5					Down:	10.667mV		

12/Jul/2016

We identified the highest heating location, and inspected there by some fiber-scopes.

Inspection tools for Cold part #3

- Digital borescope (J-SCOPE)
- Rigid borescope (OLYMPUS)
- Digital borescope (OLYMPUS)

Small blisters existed around heating area, but probably no correlation. Because, there was no evidence for cold part #4.

Courtesy of Tanaka-san

Outline

- ILC-TDR
- Motivation
- RF design by HFSS
- Fabrication processes
- Incoming inspection
- Assembly work in clean room
- Low power test / Adjustment of inner conductor for lowest S_{11}
- High power test at test bench
- Inspection for heating area
- More inspection / Identification of cause for heating
- Summary / Future plan

Inspection for unusual heating by DESY magnet

I attached small DESY magnets around tapered pipe.

Just after magnets attachment, temperature rise stopped and decreased. But, when RF pulse width changed from 400 to 500 μ sec, there was no effect \downarrow Many electrons directly hit at tapered pipe! (No thermal conductivity)

CST simulation just recently started!

Outline

- ILC-TDR
- Motivation
- RF design by HFSS
- Fabrication processes
- Incoming inspection
- Assembly work in clean room
- Low power test / Adjustment of inner conductor for lowest S_{11}
- High power test at test bench
- Inspection for heating area
- More inspection / Identification of cause for heating
- Summary / Future plan

Summary & Future Plan

- Plug-compatibility for STF-II coupler with normal ceramic is no problem
 - RF conditioning time is comparable for previous couplers
 - RF property is no problem, but Q_L measurement is not done yet
- New ceramic coupler had significant heating problem
 - This was observed for Only tapered pipe at cold part
 - Many electrons directly hit at tapered pipe
- Rinsing study (Ultrasonic or O_3) will be done (early next year)
- Range of Q_L will be checked

Scattered Plot of 40^Φ Input Coupler Conditioning ('16/1/27)

106

Scattered Plot of 40Φ Input Coupler Conditioning ('16/1/27)

Scattered Plot of 40Φ Input Coupler Conditioning ('16/1/27)

Scattered Plot of 40Φ Input Coupler Conditioning ('16/3/2)

108
Comparison of Normal/New ceramic coupler

Comparison of Normal/New ceramic coupler

Scattered Plot of 40Φ Input Coupler Conditioning ('16/1/29)

Scattered Plot of 40Φ Input Coupler Conditioning ('16/1/29)

Scattered Plot of 40Φ Input Coupler Conditioning ('16/1/29)

Scattered Plot of 40Φ Input Coupler Conditioning ('16/3/2)

Comparison of Normal/New ceramic coupler

12/Jul/2016

Scattered Plot of 40Φ Input Coupler Conditioning ('16/2/1)

Scattered Plot of 40Φ Input Coupler Conditioning ('16/3/3)

Scattered Plot of 40Φ Input Coupler Conditioning ('16/2/2)

12/Jul/2016

Scattered Plot of 40Φ Input Coupler Conditioning ('16/2/2)

Scattered Plot of 40Φ Input Coupler Conditioning ('16/3/4)

12/Jul/2016

横軸のスケールが異なることに注意

横軸のスケールが異なることに注意

peak #1 [mV] 6

P_{forward upstream} [kW]

Electron peak vs Power

[/m] [#/

peak

6

Scattered Plot of 40¢ Input Coupler Conditioning ('16/3/4)

New ceramic

Pulse width : 500[µsec] Rep. frequency : 5 [Hz]

New ceramic

Scattered Plot of 40^Φ Input Coupler Conditioning ('16/3/23)

横軸のスケールが異なることに注意

Scattered Plot of 40Ф Input Coupler Conditioning ('16/3/23)

Scattered Plot of 40Φ Input Coupler Conditioning ('16/2/2)

