

Problems in thermal cycle test of cold window for RIKEN QWR

OZEKI Kazutaka RIKEN Nishina Center

• How to conduct thermal cycle test ?

- Our results in $\begin{cases} February (77 K / 4 K) \\ June (77 K / 40 K) \end{cases}$
- Cooling velocity ?
- Number of times of thermal cycles ?
- Implement for leakage test ?

Additional subject

• When multipacting is encountered in VT for QWR, power coupler should be overcoupled ?

General description

Prototype of SC-QWR for low β heavy-ions

One cryomodule which mounts two QWRs (Presently, only one QWR is being constructed)

Power coupler

- Coaxial
- Double windows (disk type, RT and 40 K)
- Frequency: 75.5 MHz
- Maximum RF power: 10 kW, CW

Specifications of ceramics

Two power couplers

Warm window: Kyocera Cold window: Kyocera / NTK

	Kyocera/479B	NTK/HA997
Purity of alumina [%]	99.80	99.70
Density [g·cm ⁻³]	3.9	3.9
Bending strength [MPa]	300	300
Electric permittivity	9.9 @ 1 MHz	10.0 @ 1 MHz
Dielectric loss [10 ⁻⁴]	0.4 @ 8 GHz	<1 @ 10 GHz
Thermal conductivity @ 20°C [W·m ⁻¹ ·K ⁻¹]	29	31

Thermal cycle test in February — 77 K

Cold windows enfolded with three-fold aluminum foils were dunked in LN₂ directly for ten times

Leakage test Kyocera: No leak NTK: No leak

Thermal cycle test in February — 4 K

Cold windows enfolded with three-fold aluminum foils were cooled down using cold He gas and dunked in LHe for two times.

Leakage test Kyocera: No leak NTK: Leak Test for Kyocera window was continued for six times.

Leakage test Kyocera: No leak

Cause for crack ?

Too rapid cooling ?
...but, crack was not generated by 77 K cycles.
→ accumulation of fatigue by 77 K cycles and final blow by 4 K cycles ?

Inappropriate implement for leakage test ?
Inner and outer cylinders were sealed all together.
→ slight misalign between inner and outer cylinder caused unnecessary force to brazing area ?

Cold windows were re-manufactured for both Kyocera and NTK.

Thermal cycle test for new cold windows:

- Slower cooling velocity
- Do not cool down to LHe temperature
- Decrease of the number of times of thermal cycles
- Decrease of the number of times of leakage tests
- Redesign of implement for leakage test

Redesign of Implement for leakage test

New version: Inner and outer cylinders are sealed individually.

Thermal cycle test in June — 77 K

Cold windows enfolded with ten-fold aluminum foils were slowly cooled down to 77 K using cold He gas for three times.

No leakage test at this time Visual inspection only

Thermal cycle test in June — 40 K

Cold windows enfolded with ten-fold aluminum foils were slowly cooled down to 40 K using cold He gas for two times.

Leakage test Kyocera: No leak NTK: No leak

I want to hear your opinions:

- Cause for crack in 1st window ?
 - too rapid cooling, and/or
 - inappropriate implement for leakage test, or
 - other reasons ?
- Proper cooling velocity of window ?
- Number of times of thermal cycles ?
- Design of implement for leakage test ?
- When multipacting is encountered in VT for QWR, power coupler should be overcoupled ? (In that case, to what extent ?)

Brief introduction of RIKEN QWR

Prototype of SC-QWR for low β heavy-ions: One cryomodule which contains two QWRs

Specifications

Resonant frequency [MHz]	75.5
G	23.3
$R_{\rm sh}/Q[\Omega]$	714
$Q_0 (R_s = 25 n\Omega)$	9.3×10 ⁸
E _{acc} [MV/m]	4.5
E _{peak} / E _{acc}	6.3
B _{peak} / E _{acc} [mT/(MV/m)]	10.6

Basic concepts of cryomodule

- Resonator vacuum is separated from the vacuum of the cryostat
- Power coupler has coupling tunable mechanism without warming up or release of vacuum
- Single-stage thermal shield (40 K) cooled with a small cryo-cooler
- Room temperature magnetic shield

