

中國科學院為能物況為完備 Institute of High Energy Physics Chinese Academy of Sciences



# **FPCs Development at IHEP**

## RF Group (IHEP) Tongming Huang, Weimin Pan, Qiang Ma, Haiying Lin, Fanbo Meng

# CONTENTS



- General
- Issues on design, fabrication and test
- Issues on online operation

# CONTENTS



- General
- Issues on design, fabrication and test
- Issues on online operation

# General

• In the past ten years, several kinds of power couplers have been developed at IHEP for different projects.

| Facility   | Cavity type                      | Freq.    | Coupler type                           | Power                                | Status                |
|------------|----------------------------------|----------|----------------------------------------|--------------------------------------|-----------------------|
| BEPCII     | single cell<br>elliptical (SCC ) | 500MHz   | Coax, fixed, capacitive single window  | Test: CW, 420 kW<br>Oper: CW, 150 kW | Beam operation        |
| C-ADS      | Spoke (SCC)<br>β=0.12,0.21       | 325MHz   | Coax, fixed, capacitive single window  | Test: CW, 10 kW<br>Oper: CW, 10 kW   | Beam<br>commissioning |
| C-ADS      | HWR (SCC)<br>β=0.10,0.15         | 162.5MHz | Coax, fixed, capacitive single window  | Test: CW, 10 kW<br>Oper: CW, 10 kW   | Beam<br>commissioning |
| ILC<br>R&D | Nine cell<br>elliptical (SCC )   | 1300MHz  | Coax, fixed, capacitive double windows | Test: 1MW,1.5ms,5Hz                  | Cavity<br>integration |
| C-ADS      | RFQ-I (NC )                      | 325MHz   | Coax, fixed, inductive single window   | Test: CW, 105 kW<br>Oper: CW,100 kW  | Beam<br>commissioning |
| C-ADS      | RFQ-II (NC )                     | 162.5MHz | Coax, fixed, inductive single window   | Oper: CW,80 kW                       | Beam<br>commissioning |

# FPC for BEPCII SCC

- Designed based on KEKB 508MHz SCC coupler;
- Four prototypes were fabricated, and three tested at KEK, one tested at IHEP;
- 1#CPL\_2010 assembled with spare cavity system and joined the HT successfully;
- 2#CPL\_2010 have being operating with beam successfully since last November (Maximum RF power: 120kW)





| CPL #      | <b>RT</b> on stand test results                                 |
|------------|-----------------------------------------------------------------|
| 1#CPL_2008 | 270kW,CW,TW<br>(Tested at KEK)                                  |
| 2#CPL_2010 | 300KW,CW,TW<br>(Tested at KEK)                                  |
| 1#CPL_2010 | 420kW,CW,TW<br>(Tested at KEK)                                  |
| 3#CPL_2008 | 180kW,CW,TW<br>(Tested at IHEP, limited<br>by the power source) |

Window-inner conductor assembly

High power test stand for 500MHz FPCs

# FPC for C-ADS Spoke SCC

- 14 formals were integrated with the cavity system and joined the beam commissioning of Injector-I for C-ADS;
- 10.1MeV at a pulse beam current of 10.03mA was reached in last month.





FPCs assembled with CM1 of Injector-I



FPCs assembled with CM2 of Injector-I



Window-inner conductor assembly

#### huangtm@ihep.ac.cn

WWFPC Mini-workshop July 12-13,2016, CERN, Switzerland

# FPC for C-ADS HWR SCC

- 2 prototypes and 18 formals were fabricated and high power tested successfully;
- 12 formals joined the beam commissioning of Injector-II for C-ADS;
- Due to error interlock bypass, two windows cracked during 10 MeV beam conditioning.





Components after fabrication

FPCs assembled with CM1 of Injector-II

Injector-II is under 10 MeV beam conditioning now

huangtm@ihep.ac.cn

WWFPC Mini-workshop July 12-13,2016, CERN, Switzerland

# FPC for ILC R&D 9-cell SCC

- Two prototypes were fabricated in the end of 2012; and received high power test at KEK in March, 2013 (Supported by Eiji. Kako);
- High power test results: 1MW, 1.5ms, 5Hz;
- One prototype have been integrated with a SRF accelerating unit for ILC R&D developed at IHEP.





High power tested at KEK



Integrated with cavity

After fabrication

# FPC for C-ADS 325MHz RFQ

- The window & inner conductor assembly were tested up to CW,100 kW in August, 2012;
- Four formals were fabricated and installed on the RFQ cavity in the early of 2014;
- The conditioning of the RFQ system started on May,2014; and maximum power reached: 250kW, DF 99.97% (each FPC 62.5kW).



# FPC for C-ADS 162.5MHz RFQ

- Designed as the spare coupler for C-ADS injector-II RFQ;
- The fabrication of two prototypes were completed in September, 2014;
- One has joined the beam commissioning of Injector-II since October, 2015; which operated stably.



The coaxial part



**Online** operation

# CONTENTS



- General
- Issues on design, fabrication and test
- Issues on online operation

# **Design tools discussion**

| Benchmark and                              |                  | Task                                                                | ΤοοΙ                                                                      |
|--------------------------------------------|------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|
| comparison<br>work is<br>necessary!        |                  | Impedance matching                                                  | <ul> <li>HFSS</li> <li>CST</li> <li>ACE3P</li> </ul>                      |
| Hope to get the comparison about different | RF<br>Mechanical | Qext calculation                                                    | <ul><li>CST</li><li>HFSS</li><li>ACE3P</li></ul>                          |
| codes.                                     |                  | MP simulation                                                       | <ul><li>Multipac</li><li>CST</li><li>ACE3P</li></ul>                      |
|                                            |                  | Other RF related<br>parameters( Ep, RF loss,<br>RF power leak etc.) | <ul><li>HFSS</li><li>CST</li></ul>                                        |
|                                            |                  | Thermal-stress analysis                                             | <ul> <li>ANSYS APDL</li> <li>HFSS-ANSYS Workbench</li> <li>CST</li> </ul> |
|                                            |                  | Heat load calculation                                               | <ul><li>ANSYS APDL</li><li>Others?</li></ul>                              |
|                                            |                  | Other mechanical related issues(displacement, modes resonant etc.)  | <ul><li>ANSYS APDL</li><li>ANSYS Workbench</li></ul>                      |

# Window number

## • How to decide the number of the window for a FPC?

|                  | Pros                                                                                  | Cons                                                                                                                                                      |
|------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single<br>window | <ul><li>Simpler design;</li><li>Easy to cool;</li><li>Better power handling</li></ul> | <ul> <li>Potential contamination to the cavity;</li> <li>Less vacuum safety</li> </ul>                                                                    |
| Double<br>window | <ul> <li>Better vacuum safety;</li> <li>Better for cavity<br/>cleanness</li> </ul>    | <ul> <li>Complicated design and<br/>higher cost;</li> <li>Worse power handling;</li> <li>Hard to cool, especially the<br/>bellow and cold part</li> </ul> |

|                         | Typica<br>windo   | al single<br>ow FPC | Typical<br>window                      | double<br>vs FPC                       |
|-------------------------|-------------------|---------------------|----------------------------------------|----------------------------------------|
| Name                    | LHC 400MHZ<br>SCC | KEKB 508MHz<br>SCC  | TTF-III 1.3GHz<br>SCC                  | Cornel ERL<br>injector SCC             |
| Window type             | Cylindrical       | Disk, coax          | Warm: cylindrical<br>Cold: cylindrical | Warm: cylindrical<br>Cold: cylindrical |
| Power                   | 500kW,CW          | 800kW,CW            | < 8kW (average)                        | 75kW,CW                                |
| Cavity<br>gradient      | 5 MV/m            | 7 MV/m              | >20 MV/m                               | 14 MV/m                                |
| No. of cavity<br>per CM | 4                 | 1                   | 8 (European XFEL)                      | 5                                      |

# Window number, cont.

• Any suggestion about the window number selection?

|       | Safety        | R        |                                                  |                          |                |
|-------|---------------|----------|--------------------------------------------------|--------------------------|----------------|
|       |               | Street 1 | issues                                           | condition                | Suggestion     |
|       |               |          | Cavity normal<br>gradient → clean                | High gradient;<br>High Q | Double windows |
| Clean | Window<br>No. | Power    | Power requirement<br>→ design, cooling,<br>cost, | High average<br>power    | Single window  |
|       |               |          | Cavity No. per CM<br>→ safety                    | Single cavity            | Single window  |
|       | Cost          |          |                                                  |                          |                |

# Window number, cont.

- We developed some new designs
  - Single warm window with short vacuum part, which can be assembled with cavity in class 10 clean room:
  - Special cryo-module design to assure the coupler can be assembled with cavity in class 10 clean room.
  - Two warm windows → improve the vacuum safety (Designed by Yongming Li, IMP)
- Any comments about above designs?



CM1 of Injector-II for C-ADS: cuboid shape cryo-module



CM4 of main linac for C-ADS : short vacuum part

C-ADS main linac cryo-module: two warm windows

huangtm@ihep.ac.cn

# **MP** simulation

- Tool: CST-tracking/pic, ACE3P-s3p/track3p, Multipac (2D). Which one is the best?
- There is obvious MP trace on the coupler antenna tip close to the coupling port of the 325MHz RFQ, which agrees well with the simulation.
- So, it's necessary to simulate the MP around the coupling port area.



# Heat load calculation

 For the "thermal anchor" cooling, both static and dynamic heat load can be calculated by ANSYS APDL.

### Question:

- For the "GHe cooling", how to get an accurate heat load estimation? (difficult to define the boundary condition)
- Tool:
  - AYSYS Workbench—CFX
  - Others?



Thermal anchor

GHe cooling

# Copper plating

- In our case, all pieces were brazed first, copper plated afterward.
- Quality check: Liquid Nitrogen thermal shock and ultrasonic cleaning.
- Copper plating thickness was measured by two methods.
- Question: Is it necessary to do 400~800 °C heat treatment after plating?



Measured by microscope



Bad coating: blemishes and oxidation



Good coating



**Thickness Gauge** 

Liquid Nitrogen thermal shock

huangtm@ihep.ac.cn

WWFPC Mini-workshop July 12-13,2016, CERN, Switzerland

## Relative permeability of S.S-1

• The  $\mu_r$  of Stainless steel is **unstable and irregular** during the whole fabrication process



# Relative permeability of S.S-2



## Relative permeability of S.S-3

• Question: How to keep  $\mu_r$  stable and as low as possible?

|   | Fabrication process                    | Sample A          | Sample B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 |
|---|----------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1 | Machining                              | $\mu_r$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 2 | Heat treatment<br>(800°C, Hydrogen)    | µ <sub>r</sub> ∖  | Contraction of the second seco |     |
| 3 | Helium shocking                        | $\mu_r$ no change | µ <sub>r</sub> local ↗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| 4 | Nickel plating                         | μ <sub>r</sub> /  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 5 | Heat treatment again (800°C, Hydrogen) | μ <sub>r</sub> ,  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |

# Test benches for high power test

- Two test benches (162.5MHz & 325MHz)based on an approximate capacitor-loaded coaxial cavity has been developed.
- One new 325MHz test bench based on QWR cavity developed: more compact

on capacitor-loaded coaxial cavity

162.5 & 325MHzTest benches based



325MHz Test benches based on QWR cavity

# Pre-processing before test

### **Question:** Is it necessary to do HPR for the coupler pre-processing?





Outer conductor ultrasonic clean



Pure water rinsing



Dry with ultra pure N2



Particle monitoring during assembly



Assembled in clean room



Baking

huangtm@ihep.ac.cn

WWFPC Mini-workshop July 12-13,2016, CERN, Switzerland

# High power test systems



huangtm@ihep.ac.cn

WWFPC Mini-workshop July 12-13,2016, CERN, Switzerland

# High power test results

- More than 40 couplers has been high power tested up to the nominal power level since 2012.
- Both traveling and standing wave with removable short circuit conditioning are done in RT test stand.



# High power conditioning



#### huangtm@ihep.ac.cn

WWFPC Mini-workshop July 12-13,2016, CERN, Switzerland

# High power conditioning, cont.

- Method2:
  - Started with CW, low power level
  - Change to pulse or 'CW + pulse' conditioning when vacuum interlock happened frequently

## Question:

- Which method is better?

|         | Pros.                    | Cons.                                                |
|---------|--------------------------|------------------------------------------------------|
| Method1 | More safe                | • ?                                                  |
| Method2 | More efficient sometimes | More dangerous if serious outgasing and arc happened |



# CONTENTS



- General
- Issues on design, fabrication and test
- Issues on online operation

## FE induced window crack problem (phenomena) Two Spoek012 FPCs assembled with the TCM were encountered fatal window

• Two Spoek012 FPCs assembled with the TCM were encountered fatal window crack during the in-cryomodule RF processing without beam.



In-cryomodule RF processing of Spoke couplers for TCM of C-ADSInjector-I

### The cracked window inspection





The color of the vacuum side of the ceramic surface changed from white to yellow **Questions:** color change reason?





No electron and ion bombarding mark

#### huangtm@ihep.ac.cn

# FE induced window crack problem A series of experiments were done to find the window crack reason.

- Important experience: cavity FE may resulted in fatal ceramic crack, especially for the low beta SCC with coupler located in the cavity wall instead of beam pipe.



after Teflon plate shielding.

pickup signal to capture the voltage produced by FE electrons.

The expected DC voltage was detected accompanying the Xray dose arising.

# FE induced window crack problem (analysis, cont.)

Then, the FE effect was simulated using CST particle studio.



# FE induced window crack problem (analysis, cont.)

 Simulation result shows that the FE induced electrons can fly out from the coupler port and impacted directly on the ceramic.



# FE induced window crack problem (analysis, cont.)

## • Ceramic leak reason guess:

- First, serious FE happened in the cavity, then electrons flied out from the coupling port and impacted directly on the vacuum side of the ceramic, which made the ceramic charged;
- Second, electrostatic discharging happened once exceeding the ceramic breakdown voltage;
- Finally, the strong energy released from the discharging made the ceramic punctured along the thickness direction and resulted in fatal vacuum leak.

## Questions: what's the real damage force?

- Direct electron impacting force?
- Discharging energy → puncture force?

# FE induced window crack problem (Solution)

- Solution:
  - Improve the coupler assembling environment: process and cleanness;
  - Special gasket or antenna tip to shield the FE-induced electrons;
  - Radiation dose also interlocked during online operation to avoid FE
  - Change the window position by 90 degree bending (similar with APT coupler)
- Questions: Other suggested solutions?



Spoke FPC for CM1 of C-ADS Injector-I



Spoke FPC for CM2 of C-ADS Injector-I

# **Online operation interlock**

- Two HWR010 FPC for CM1&2 of C-ADS injector-II leaked.
  - Running for 1 year, two coupler in CM6-1 were leaking, Vacuum interlock: 5E-4Pa (Interlock too loose!)
  - CM1 running for 10 days, 2 couplers window leaked because of the bypass of vacuum interlock. Before the accident, cavities were running well. After that, the nearby cavities also degraded.

# **Questions:** Safe interlock value (for SCC)

| Items              | value            |
|--------------------|------------------|
| Vacuum             | 1E-6Pa?          |
| Window<br>Temp.    | Warm:?<br>Cold:? |
| Arc<br>sensitivity | ?                |
| e-current          | ?                |
| others             | ?                |



#### Question: color change reason?

# **BEPCII FPC replacement**

- The west window for BEPCII 500MHz SCC cracked suddenly during beam operation on Nov. 18,2015;
- Vacuum pressure after cracked: 2E-2Pa; Leak rate: >3E-4 mbar.l/s
- Actually, the window had been overheating for one year before it cracked, which just alleviated by baking and strong air cooling [1];



BEPCII 500MHz SCC system(schematic)



BEPCII 500MHz SCC system (In tunnel)

#### huangtm@ihep.ac.cn

WWFPC Mini-workshop July 12-13,2016, CERN, Switzerland

- The cracked window replacement was processed in tunnel.
- One removable clean room (class 100) and a local clean booth were adopted.



Schematic of window replacement

- High purity N2 inflated to keep a plus pressure;
- It took 2 hour for the whole process of window replacement.



Old window taken out

The coupler port covered with clean PVC plate (down) and plastic film (up)



New window pick up from the container by clean booth

#### huangtm@ihep.ac.cn

WWFPC Mini-workshop July 12-13,2016, CERN, Switzerland

 The cleanness was monitored continuously by the dust particle counter.







Air-side of the new window

New window move into place

New window waiting for put down: particle measuring



- There are three snow figures on the outer conductor of the window vacuum side
- Feel rough

huangtm@ihep.ac.cn

WWFPC Mini-workshop July 12-13,2016, CERN, Switzerland



• There is a fish scale ring close to the inner choke

#### huangtm@ihep.ac.cn



- The color close to the window –inner conductor EBW seam turn dark.
- The dark matter to be analyzed.



- The fish scale also can be found on the ceramic near the outer conductor snow figure
- And the color of the ceramic turns dark on the whole.

#### huangtm@ihep.ac.cn



• The fish scale also can be found on the ceramic near the outer conductor snow figure.

#### huangtm@ihep.ac.cn

## Personal guess about the window damage

- The snow figure formation reason guess:
  - Serious discharging happened → ions bombarding the outer conductor of the window → snow figure formed
- The fish scale figure formation reason guess:
  - Serious discharging happened → ions bombarding the inner and outer conductor of the window and the inner choke → copper sputtering and condensed on the ceramic → after long period operation → fish scale figure formed
  - The fish scale figure is also the source of the excessive heating of the west window.
- The arc interlock was found disabled due to the fiber damaged by radiation. I think it's the chief culprits of the window crack accident.
- Question: How to deal with the radiation reduced fiber damage → arc interlock disabled
- Any comments?





# Thank you for your attention !

