

WWFP #2

E-XFEL Power Coupler status

July, 12-13, 2016

XFEL Outline

Status

- Power couplers
- Technical Interlock
- Technical problems
 - Pushrod leak
 - Conditioning

Conclusion

XFEL Status of power coupler contracts

Thales-RI (order placed 2010)

- 670 units in the framework of the initial in kind contribution order
- Delivery finished March 2016
- strongly delayed because long copper plating development, low recovery rate of rejected parts and delivery delay of new parts

Thales-RI (order placed Dec. 2015)

- 10 coaxial units ordered to replace damaged couplers during assembly and test on modules
- Delivery finished in April 2016

XFEL Status of power coupler contracts, cont'd

- RI (order placed 2012 because of difficulties with copper plating at the main contract)
 - 32 coaxial units
 - Schedule is very late because of plating problems (several companies and CERN have been involved)
 - Finally THALES was contracted by RI for the copper plating in Jan 2016
 - Delivery starts May 9th and will be finished in July 2016
 - Accessories ordered early 2016, delivery April and May 2016
 - Delivered up to now: 12, last delivery planned Aug. 5th
- CPI (order placed May 2014 because of late main contract)
 - 150 coupler units
 - Schedule is late
 - Delivery finished July 2016, few returns

Signals for one RF station (32 couplers)

Count	Signal	Remark
96	e- sensor	current measurement with bias voltage
32	Spark	main coupler air side (waveguide)
64	PT1000	ceramic RF window (T70K, T300K)
12	analog	IGP vacuum and high voltage
2	analog	cryo signals (He level, He pressure)
1	contact	vacuum system status
1	RS422	cryogenic system status
	· · · ·	

Reaction time: <5µs</p>

WWFP #2, July 12-13, 2016 W.–D. Möller, DESY, Hamburg

DESY

HELMHOLTZ

XFEL Status of Technical Interlock (TIL)

- Injector (3 TIL systems)
 - Gun TIL under operation
 - Injector module TIL under operation
 - Third harmonic TIL under operation
- RF station A2, A6 A11 (7 TIL systems)
 - commissioned
 - Duration of commissioning for A6 A11 was 48h only
- 16 more TIL systems are ready for installation or under installation
 - TIL hardware: 26 out of 28 TIL systems are finished (one TIL = two racks), ready for tunnel installation
- Module cabling: 89 all modules at DESY (89 modules) are fully equiped with TIL sensors and cabling

XFEL Pushrod leak

The pushrod (PR) function:

- It moves the coupler antenna in order to change the loaded Q.
- The PR bellow closes the coupler vacuum against the air.
- PR bellow has no RF function.

Problem:

- 26 PR's developed a leak in bellow between coupler vacuum and air
- Ieak appears during RF conditioning of modules
- Leak appears always near 12th (±3) convolution on inside valley

History:

- >40 TTF power couplers in FLASH are operated since many years without any defects
- change for XFEL power couplers:
 - → PR bellow is 26mm longer
 - → PR geometry is changed

XFEL Pushrod leak, location

WWFP #2, July 12-13, 2016 W.–D. Möller, DESY, Hamburg

XFEL Pushrod leak, investigation

- bellow supplier SKODOCK investigation result:
 - steel structure is locally changed by overheating, carbide precipitation on grain boundaries causes stress corrosion cracking
- **RF** simulations (DESY, SLAC):
 - RF leak of the capacity leads to 15V/m @ 1W
 i.e. for 200kW full reflection: 6.5V/mm
 - The breakdown voltage in air is 3kV/mm
- Sparking is only possible when the bellow is deformed and touches the inner rod.

WWFP #2, July 12-13, 2016 W.–D. Möller, DESY, Hamburg

XFEL Pushrod leak, countermeasures

The capacitor will be replaced by a short →the RF leak is suppressed

- The CPI coupler have no capacitor
 no need for replacement
- Has to be done at all modules, also in the tunnel
- Coupler vacuum is not involved
- Material arrived at DESY, work has started
- No more RF operation with capacitor
- Exchange and commissioning will be still within time frame of XFEL
- The DC insulation of inner conductor is foreseen for bias application as multipacting remedy, was never needed in FLASH

XFEL Conditioning problems

- Recently we faced overheating and strong light during conditioning on module test stands
 - All parts passed the RF test at LAL without any problems
 - Warm coaxial coupler parts had to be exchanged
 - Possible causes:
 - Copper plating quality
 - Surface contamination (RGA are OK)
 - Assembly problems with RF contacts at inner or outer conductor
 - → ???
 - Under investigation

- Power coupler fabrication is still determining the XFEL schedule
- Additional work on power coupler on modules, also in the tunnel, necessary. Exchange of parts and commissioning will be still within time frame of XFEL
- TIL installation is in time
- TIL commissioning is faster than expected
 - TIL schedule depends from the tunnel cabling

Thank you for your attention

XFEL modules couplers parts problems. 01-07-2016.

N	module	pos.	Cold Part	Warm Part	problem	comment
1	XM80	2	THRI-CP-838	THRI-WP- 320	WCC e-2/e-3 signals and cpl.vac not conditionable, mostly e-2. At cold high T70K (120K).	WP exchanged
2		4	THRI-CP-756	THRI-WP- 758		WP exchanged
3	XM82	1	CPI-CP-061	CPI-WP-020	Very strong light (LUWG) signal (300Lx), high T300K (350K)	WP burned (near warm window) / exchanged
4	XM85	5	CPI-CP-063	CPI-WP-060	WCC e-2 signals and cpl.vac not conditionable, high T70K (345K). At cold high T70K (120K).	WP exchanged
5	XM87	4	CPI-CP-074	CPI-WP-079	At cold high T70K (120K) - phase independent.	WP exchanged
6		2	CPI-CP-083	CPI-WP-089	WCC e-2 signals and cpl.vac not conditionable, high T70K (345K). At cold high T70K (140K).	WP exchanged
7	XM88	4	THRI-CP-501	CPI-WP-084	Light not conditionable (15 Lux), slight T300K increase (+5K)	WP accepted with warning
8		8	CPI-CP-011	THRI-WP- 834	T70K overheating (+20K)	WP exchanged
9	XM89	6	CPI-CP-086	THRI-WP- 849	WCCMP-like discharge (200kW)high e-2 signal, e-1 present, no light and e-3 signals. High T70K (345K). High cpl. and cav.vac.	WP exchanged
10		7	CPI-CP-087	THRI-WP- 891		WP exchanged
11	XM90	6	CPI-CP-091	CPI-WP-091	T70K overheating (150K) at 2K operation.	WP exchanged
12	XM91	7	CPI-CP-095	CPI-WP-102	T70K overheating (150K) at 2K operation.	WP exchanged
13		5	CPI-CP-019	CPI-WP-106	WCCT70K overheating (350K), 190K at cold test	WP exchanged
14	XM92	6	CPI-CP-009	CPI-WP-100	WCCT70K overheating (335K), 136K at cold test	WP exchanged
15		7	CPI-CP-098	CPI-WP-103	WCCT70K overheating (330K), 124K at cold test	WP exchanged
16	XM03	5	CPI-CP-025	CPI-WP-086	WCC T70K overheating (350K) 120K at cold test	WP to be exchanged
17 ^	AWISS	6	CPI-CP-102	CPI-WP-099		WP to be exchanged
18	XM94	5	CPI-CP-103	CPI-WP-115	WCCT70K overheating (345K)	WP to be exchanged
19	XM95	7	CPI-CP-111	RIXF-WP- 026	T70K overheating (120K, +20K) at 2K operation.	WP (inner screw) to be inspected
20 21	XMOR	5	CPI-CP-036	CPI-WP-122	WCCT70K overheating (C5 - 350K), high e-2 signal and LUWG	WP to be exchanged
	XIVI30	7	CPI-CP-112	CPI-WP-126	not conditionable (12V). WCC not successful.	WP to be exchanged

XFEL TTF3 – XFEL PR comparison

TTF3 coupler, short bellow, short PR, manual tuning

XFEL coupler, long bellow, longer PR, motor tuning

15

XFEL Replacement Installation

THRI coupler with capacitor

16

XFEL Replacement Installation

THRI coupler with coax gasket

17

XFEL Replacement Installation

Comparison

XFEL Capacitor replacement

