Viewpoint from a University Group

Bill Lockman

with input from: Jim Cochran, Jason Nielsen, Terry Schalk

WT2 workshop

April 6-7, 2009

Introduction

Personnel and activities

Hardware projection

Sites

Configurations

Conclusions

Up until a couple of months ago, SCIPP had not given serious consideration to building a T3

Our plan was to:

- Use Ixplus at CERN
- Use the grid
- Use SCIPP computing hardware at CERN
- Use available cycles at SLAC T2 (20% of 1200 cores)
- ATLAS computing model anticipates T2 resources may not be sufficient to handle production and D³PD-based analysis demands
 - T3 needed to offload demand (a more "flexible" and "nimble" model)
- Revisiting the T3 option in light of new estimates from forthcoming T3 report

Facility (5): Alan Litke¹, Jason Nielsen, Bruce Schumm, Abe Seiden, Hartmut Sadrozinski

Staff (2): Alex Grillo, Bill Lockman

Postdocs (2): Sofia Chouridou¹, Jovan Mitrevski¹

Graduate Students (5):

Andrea Bangert, Daniel Damiani, Ken Fowler, Gabe Hare¹, Peter Manning

¹currently at CERN

Standard Model (SM) physics:

- Underlying event: Hare, Nielsen
- $W(\mu\nu)$ + jets: Chouridou, Nielsen
- Z(ee) + jets: Fowler, Nielsen, Seiden

New Physics (NP):

- GMSB (γγ + missE_t): Baggert, Damiani, Litke, Mitrevski, Nielsen, Schumm
- Universal Extra Dimensions: Manning, Seiden

Input: # of analyses associated with the specified stream started in the specified year

performance ESD/pDPD at T2	# (2009)
e-gamma	(1)*
muon	
track	
W/Z(e)	2
W/Z(μ)	2
W/Z(τ)/missE _t	
gam-jet	
minbias	(1)*

physics stream (AOD/D ¹ PD) at T2	# (2009)	# (2010)
e-gamma	1	1
muon	1	
jet/missE _t	1	

*not included in spreadsheet calculation

Resources required to perform a single 1 hour pass on the D³PDs at the T3:

2009	2010
29 cores	169 cores
10 TB	60 TB

#cores (kSpecInt2K-s) = [# of events]•[MC factor]•[1/(transform rate)]
#TB = [# of events]•[MC factor]•[D³PD size/event (TB)]

#events includes a stream /perfDPD reduction factorMC factor = 5 = data + 4•data MCtransform (D3PD plots) rate = 10kHz on 1 KSpecInt2K CPUD3PD size/event (TB) = 5KB/event•10⁻⁹ TB/KB

This represents 5×10⁹ events per hour in 2010

April 6, 2009

SLAC WT2 Workshop

B. Lockman (SCIPP)

The SCIPP T3 site is not obvious. At least 3 choices:

Site:	Advantages:	Disadvantages:
SCIPP	 cooling, power, space is provided cost of management/support 	 limited cooling, power, space probably can't scale past 2010 size limited and shared connectivity (1Gb/s) support probably not 24/7
SLAC	 proven track record 24/7 support Direct connection to SLAC T2 load sharing possible 	 cost of power, cooling, management
NERSC	•existing hardware, infrastructure, management	•we have little experience with NERSC

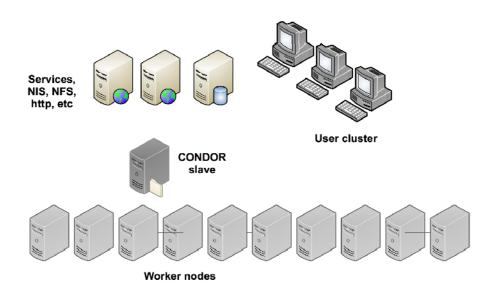
This maps into the type of T3 center (T3w, T3g, T3gs, T3af) we envision for UCSC

	Т3₩	T3g	T3gs	T3af
stands for:	workstation	grid access	grid services	analysis facility
арртох.				limited by
number	~8-32	> 80	> 168	agreement
of cores				
		towers [ANL model,		
		see E.2.1] or		.
format	towers	rack [Duke model,	rack	ræck
		see <u>E.2.2</u>]		
storage				limited by
capacity	~ few TB	> 20TB	> 30TB	agreement
clustered?	no	yes,	yes,	yes
batch?	or minimal	headless workers	headless workers	headless workers
interactive				
ROOTtuple	yes	DO	no	DO
analysis?			<i>.</i>	
	few hundreds	few thousands	few millions	few millions
	ATLEAST in	AILFAST in	ATLFAST in	ATLEAST in
MC,	hours;	days;	days;	days;
e.g. tł	millions	millions	many millions	many millions
	generator in hours	generator	generator	generator
A	m nours	in hours	in hours	in hours
data				
production	no	DO	yes	yes
capability?				lab
support level	owner/		group/dept professional	
network	group	group	protessional	professional
rating	100Mbps	> 1 Gbps	10Gbps	10Gbps
Tacing	10000000	ROOT, OSG	ROOT, OSG	100000
		Athena	Local Resource	l l
		Local Resource	Manager (e.g.	
		Manager (e.g.	Condor, PBS)	
software.	ROOT	Condor, PBS.	robust network	
sortware, services	Athena	ArCond[see E.2.1])	file system (e.g.	
		DO2 endpoint	dCache. xRootd)	
		"outsourced"	DO2 site	
		catalog, subscription	services	same as T3gs
specialized		none (towers)		
cooling/		CRAC (rack)	CRAC	
power	none		10's kW	facility
costs	≥ 20k	≥ 30k	≥ 80k	negotiated

April 6, 2009

SLAC WT2 Workshop

B. Lockman


(SCIPP)

Strawman T3G system

Figure 23: Generic tower-based T3g system.

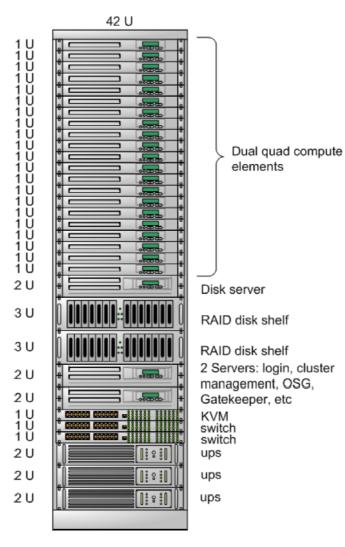
Table 24: Minimal strawman T3g system. Such a system would provide approximately 120kSl2k processing.

component	typical model	quantity	unit cost, k \$
switch	Cisco 1GB	1	2.5
worker towers	Intel-based E5410	10	2.0
1	2.33GHz, 2 TB storage		
	8GB RAM		
server	DELL PE1950	4	0.5
elements	E5440 processor, 2.83MHz,		
	16GB RAM, 250GB drive		
total cost			\$24.5k

Table 25: Strawman T3g system designed to fit into an already existing rack. Other systems are certainly possible. At added expense and slightly reduced capability, but with considerable simplification in cabling, etc., a blade-based system would fit in a rack as well. Such a system would provide approximately 160kSl2k processing.

component	typical model	quantity	unit cost, k\$
UPS	DELL	1	1.0
switch	DELL PowerConnect	1	1.5
	48GbE, portmanaged		
servers	DELL PE2950	1	4.2
	E5440 processor, 2.83GHz,		
	32GB RAM, 250GB drive		
compute	DELL PE1950	10	2.4
elements	E5440 processor, 2.83GHz,		
	16GB RAM, 250GB drive		
storage	DELL MD1000	2	5.4
elements		(24TB,	
		usable)	
total cost			\$41.5k

top: towers: 20TB 120kSI2K bottom: rack: 24TB 160kSI2K (5KW)


B. Lockman (SCIPP)

Strawman T3GS system

Figure 21: Generic single-rack T3gs system.

Table 23: Strawman T3gs system designed to fit in one, 42U rack with maximum processing and storage possible. Other systems are certainly possible. At added expense and slightly reduced capability, but with considerable simplification in cabling, etc., a blade-based system would fit in a rack as well. Such a system would provide approximately 320kSl2k processing.

component	typical model	quantity	unit cost, k\$
UPS	DELL	3	1.0
switch	DELL PowerConnect	2	1.5
	48GbE, portmanaged		
servers	DELL PE2950	3	4.2
	E5440 processor, 2.83GHz,		
	32GB RAM, 250GB drive		
compute	DELL PE1950	21	2.4
elements	E5440 processor, 2.83GHz,		
	16GB RAM, 250GB drive		
storage	DELL MD1000	2	5.4
elements		(24TB,	
		usable)	
KVM	Belkin	1	1.3
rack			1
total cost			\$82.1k

- Display heads/workstations
- Additional cache disks to access D³PD efficiently using PROOF
 - solid state drives a possibility
- \$alaries

Like many universities, we find ourselves catching up to the new T3 estimates

• We need guidance to help optimize costs, system reliability, etc.

All possible options for sites are currently on the table

Table 22: Estimates of SI2k values collected from various sources for popular processors.sors. From [15].

processor	nickname	Padova	HEP	HEPIX	OSG	BNL
Intel X5355	clovertown	2755	1322	1413	2178	
Intel E5345	clovertown	1190	1267	1889		
Intel E5335	clovertown	2123			1678	
Intel 5160	woodcrest	3161	1505	1602	2420	
Intel 5440	harpertown					2264
Opteron 270		1282	941	1056	1452	1270
Opteron 2214		1352	965	1097	1518	
Opteron 2216						1625
Opteron 2218		1648	1193	1347	1827	1625
Opteron 285		1692	1225	1383	1787	
Opteron 280		1549	1121	1266	1683	
Xeon 3.2 Hz		1516	855			1290
Xeon 3.06 Hz		1427	1166	1402	1169	945
Xeon 2.8 GHz					1123	
Xeon 2.4 GHz			1055	1264	911	747
PIII 1.25 GHz		611	299	319	501	
Opteron 275		1389	1005	1135	1521	1341

- Simulate different GMSB scenarios in WT2 batch farm using ATLAS Fast Simulation (1 minute/ev):
 - 2 GMSB scenarios (pointing & non-pointing γ)
 - 10 neutralino mass points/scenario
 - 10K events/point → 200K events

