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Introduction

No need to explain that the essential part of every HEP analysis is
density estimation.

Modelled PDF when we need to measure some parameters from ML fit
Empirical PDF (e.g. KeysPDF, polynomial) when we need some ad hoc
description of some shape (background, efficiency, ...)

Speaking in terms of today’s meeting, density estimation is an
example of unsupervised learning

Take a (training) sample
Try to predict response (probability density) for a point that is not in
the sample.

Here I will concentrate on model-independent density estimation,
mostly kernel density estimation (KDE), based on experience from
LHCb analyses.
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Simplest case: histogramming

Simplest method of density estimation: histogramming. Certainly, no need
to tell you about it.
Frequently used extension of this technique at LHCb: cubic spline
smoothing (1D, 2D). See, e.g., [PRD 90, 072003 (2014)]
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(a)LHCb Simulation 

Efficiency over 2D phase space of
Bs → DKπ decay.

Interpolation by cubic spline
between bins.

Continuous PDF (and its 1st
and 2nd derivatives).

Binning effect is still present.
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Kernel density estimation (KDE) basics

Let xi be the data points from which we have to estimate the PDF. Kernel
density estimator is

PKDE(x) =
∑
i

K (x − xi )

Here K (x) is a kernel. Can use various forms, here I will use the parabolic
one:

K (x) = 1− (x/h)2

Optimal in some sense (although the others, such as Gaussian, are almost
as good).
Note the resulting PKDE(x) in i →∞ limit is rather a convolution of the
true PDF with the kernel K (x). Thus, structures with the width ≤ kernel
width are smeared.
Kernel width h (bandwidth) needs to be optimised to reach balance
between bias (wide kernels) and stat. fluctuations (narrow kernels).
For HEP-related discussion, see

[K. Cranmer, Comp. Phys. Comm. 136 (2001) 198-207]
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KDE: bandwidth choice and adaptive kernels

There are ways to estimate the optimal bandwidth h for specific densities,
e.g. for Gaussian PDF

h∗ = σ

(
4

3n

)1/5

For optimal performance, bandwidth h should depend on local density in
the point xi :

hi = h0P(xi )
1/N

True density P(x) unknown ⇒ iterative procedure (adaptive KDE):

First iteration: fixed kernel

Second iteration: BW given by the PDF at the 1st iteration.

...
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KDE implementations

RooFit: RooKeysPDF (1-dim), RooNDKeysPDF (N-dim).

Gaussian kernel
Both fixed and adaptive kernels
Boundary correction using data reflection

scikit-learn: sklearn.neighbors.KernelDensity.

Choice of various kernels
Only fixed kernel
Different metrics
Optimisation using KD-tree ⇒ faster lookup

My own implementation (Meerkat): see below

Attempt to solve problems related to boundary effects and curse of
dimensionality.
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KDE: boundary effects

Ptrue(x) = 1+3x2+10e−x2/0.12

The usual problem with KDE is boundary
effects.
Methods to correct for this:

Data reflection.

Kernel modification near boundary.

Normally work with simple boundaries (1D,
linear). Not easy to apply to e.g. conven-
tional Dalitz plots.

Anton Poluektov (Kernel) Density Estimation IML WG meeting, 25/08/2016 7/27



KDE: correcting for boundary effect

Ptrue(x) = 1+3x2+10e−x2/0.12

Simple correction: divide result of KDE by
the convolution of kernel with flat density:

Pcorr(x) =


N∑
i=1

K(x−xi )

(U⊗K)(x) for x ∈ X ,

0 otherwise.

U(x) =

{
1 for x ∈ X ,
0 otherwise.
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KDE: correcting for boundary effect

Ptrue(x) = 1+3x2+10e−x2/0.12

Pappr = 1 + 10e−x2/0.12

Suppose we approximately know how the
PDF behaves at the boundaries. A more
sophisticated correction:

Pcorr(x) =

N∑
i=1

K (x − xi )

(Pappr ⊗ K )(x)
× Pappr(x).

replaces KDE by an approximation PDF
at boundaries and in regions with narrow
structures.
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Relative KDE

Pcorr(x) =

N∑
i=1

K (x − xi )

(Pappr ⊗ K )(x)
× Pappr(x).

In other words, we represent the PDF as a product:

Pcorr(x) = f (x)Pappr(x)

where Pappr(x) is known and describes narrow structures and boundaries,
and f (x) is slowly-varying and is represented by the kernel density.

An intermediate solution between the model-based and model-independent
density estimators.

Can be generalised to any complex boundaries, weighted distributions
(including negative weights, sWeights), variable (adaptive) kernels.

[A.P., JINST 10 P02011 (2015)]
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Relative KDE: multidimensional case

So, we have an approach that performs KDE over some approximation
PDF. How does this help in the case of multiple dimensions?
Multiple dimensions typically need wide kernel (or very large samples). A
couple of examples how approximation PDF can help:

If your multidimensional PDF is approximately factorisable:

Approximation PDF is the product of PDFs in lower dimensions.
Relative KDE with wide kernel describes residual correlations.

Efficiency shape in multiple dimensions:

Approximation PDF from high-statistics fast MC sample (e.g.
generator-level MC with simple kinematic cuts) and narrow kernel.
Relative KDE based on full Geant simulation and wider kernel.
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Meerkat library

[http://meerkat.hepforge.org]

The procedure described above is implemented in the Meerkat library
(Multidimensional Efficiency Estimation using Relative Kernel
Approximation Technique). Obviously not limited to efficiency estimation.
Direct usage of relative KDE formulas is slow because convolution should
be done in every point x . For practical applications, use binned approach
with multilinear interpolation:

Pinterp(x) =

Bin

[
N∑
i=1

K (x − xi )

]
Bin [(Pappr ⊗ K )(x)]

× Pappr(x).

Time to estimate the PDF is linear with the size of the sample, and
memory is constant (no need to store the whole data sample in memory).
Very large data sample can practically be used (I’ve used 108 sample for
5D distribution).
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Usage of Meerkat

[http://meerkat.hepforge.org]

Create a phase space from the building blocks provided.

Optionally create an approximation density.

Fill the relative KDE PDF.

Store the binned version of it into a file (or export to ROOT
histograms for 1D or 2D).

Use it in e.g. your ML fits (as a ROOT histogram, as RooFit PDF, or
as interpolated binned density using the class provided).

Both C++ interface (for compiled programs or CINT, CLang) and Python

interface are provided.
Currently used in several LHCb analyses for efficiency, background
description (especially for non-trivial phase spaces, such as Dalitz plots),
for parametrisation of PID response. Up to 5 dimensions.
Most of the analyses are ongoing, so no public plots with real data. Can
only show some toy MC results.
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Example of Meerkat usage: Dalitz plot efficiency

md = 1.8646 # D0 mass

ma = 0.497 # KS0 mass

mb = 0.139 # Pi mass

mc = 0.139 # Pi mass

# Define Dalitz phase space for D0->KsPiPi

# Variables are x=m^2(ab), y=m^2(ac)

phsp = DalitzPhaseSpace("PhspDalitz",

md, ma, mb, mc)

# Create polynomial approximation PDF

poly = PolynomialDensity("PolyPDF",

phsp, # Phase space

2, # Power of polynomial

ntuple, # Input ntuple

"x","y", # Ntuple variables

50000) # Sample for MC normalisation

# Create kernel PDF from the generated sample

kde = BinnedKernelDensity("KernelPDF",

phsp, # Phase space

ntuple, # Input ntuple

"x","y", # Variables to use

200,200, # Numbers of bins

0.4, 0.4,# Kernel widths

poly, # Approximation PDF

50000) # Sample for MC convolution
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Gaussian Mixture Model

Sum of multivariate Gaussian components with different
normalisations, widths and correlations.

Classical estimation algorithm: expectation-maximization method
(EM).

Iterative procedure for a given number of Gaussians.
Expectation step: assign each data point to its Gaussian component
(e.g. using weights)
Maximization step: calculate the new parameters of the Gaussian
component from the assigned points (mean, covariance).

EM works well without boundaries, or at least when the Gaussians are
significantly away from boundaries (such that mean and covariance
gives a good approximation). Difficult to describe distributions close
to uniform.
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Gaussian Mixture Model

Can use bruteforce fitting at the maximisation step of EM:

Choose one Gaussian component and do ML fit of its parameters.

Repeat for each component.

Increase number of components one by one.

Generally better results than KDE for small samples and PDFs with
irregularities (e.g. background samples with limited statistics).
∼ 20 Gaussian components usable with modern h/w, esp. GPU.
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Using Bayesian classifier (ANN, etc.)

Use supervised learning technique to perform unsupervised learning task.
[B. Viaud, EPJ. Plus 131 (2016), 6, 191]

Take two samples:
1 Sample to estimate density (“efficiency”)
2 Uniform distribution in the phase space

Train classifier to distinguish the two samples based on distribution
variables xi .

If the classifier gives Bayesian probability P(x) for the point to belong
to sample 1 (“probability to pass selection”), it can be interpreted as
the local PDF density.

Classifiers that can be used: NeuroBayes, TMVA with Bayesian
regularization ([Comp. Phys. Comm. 182 (2011) 2655-2660]).

Another possible approach: train ANN with backpropagation algorithm
specifically designed to reproduce probability density. See, e.g. [Comp.

Phys. Comm. 135 (2001) 167175].
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Summary

Model-independent density estimation is a crucial point in many HEP
analyses.

A few techniques are on market, with their advantages and
drawbacks. Just a few examples:

Histogramming
Kernel density estimation
Gaussian mixture model
Multivariate Bayesian classifiers

including some which I haven’t covered here

Orthogonal polynomials
k-nearest neighbours

A few possibilities are either not tried, or not widely known, and in
many cases the convenient implementation is lacking. Any volunteers?
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Backup
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Classes of Meerkat library

Derived from AbsPhaseSpace:

OneDimPhaseSpace — 1D range

DalitzPhaseSpace — 2D Dalitz plot phase space

ParametricPhaseSpace — range [zmin(~x), zmax(~x)] as TFormula’s

CombinedPhaseSpace — direct product of other phase spaces

Derived from AbsDensity:

UniformDensity — Constant PDF over any phase space

FormulaDensity — PDF given by TFormula (up to 4D)

KernelDensity — Unbinned KDE (slow! use binned instead)

BinnedDensity — Binned PDF from any AbsDensity or file

BinnedKernelDensity — Binned KDE, fixed kernel

AdaptiveKernelDensity — Binned KDE, adaptive kernel

FactorisedDensity — Product of any AbsDensities
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OneDimPdf: Estimate 1D PDF with fixed kernel

This is the simples example: 1D PDF in range (−1, 1) with flat
approximation PDF.

# Create phase space

phsp = OneDimPhaseSpace("Phsp1D", -1, 1)

# Create kernel PDF from the ntuple

kde = BinnedKernelDensity("KernelPDF",

phsp, # Phase space

ntuple, # Input ntuple

"x", # Variable to use

1000, # Number of bins

0.2, # Kernel width

0, # Approx. PDF (0 for flat)

100000 # Sample for MC convolution

)

# Write the result

kde.writeToFile("OneDimPdfBins.root")

# Project result to 1D histogram

hist = TH1F("hist","Kernel PDF",200,-1.5,1.5)

kde.project(hist)
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OneDimAdaptiveKernel: Varying kernel width

If your PDF contains sharp peaks, you may want adaptive PDF with kernel
width depending on density: σ ∝ P−1/Ndim

# Create phase space

phsp = OneDimPhaseSpace("Phsp", -1, 1)

# Create kernel PDF from the ntuple

kde = BinnedKernelDensity("KernelPDF",

phsp, ntuple,

"x", 1000, 0.1,

0, 0, 100000)

# Create adaptive kernel PDF with the kernel

# width depending on the binned PDF

# from the last step

ada = AdaptiveKernelDensity("AdaPDF",

phsp, ntuple,

"x", 1000,

0.1, # width corresponding to pdf=1

kde, # density for width scaling

0, 100000)
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WeightedTuple: Estimate PDF from weighted distribution

Can work with weighted distributions. Example: uniform distribution in
x ∈ (−1, 1), but weight w ∝ x2.

# Create phase space

phsp = OneDimPhaseSpace("Phsp", -1, 1)

# If number of variables passed to constructor

# is larger by 1 than the phase space

# dimensionality, the last variable is

# considered as weight

kde = BinnedKernelDensity("KernelPDF",

phsp,

ntuple, # Input ntuple

"x", # Variable to use

"w", # Weight variable

1000, # Number of bins

0.2, # Kernel width

0, # Approx. PDF (0 for flat)

100000 # Sample for MC convolution

)
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CombinedPdf: 2D phase space

Rectangular phase space, factorised density used as approximation for KDE

# Define 1D phase spaces

phsp_x = OneDimPhaseSpace("PhspX", -1, 1)

phsp_y = OneDimPhaseSpace("PhspY", -1, 1)

# Define combined phase space for the two vars

phsp = CombinedPhaseSpace("PhspCombined",

phsp_x, phsp_y)

# Densities for projections

kde_x = BinnedKernelDensity("KernelPDF_X",

phsp_x, ntuple, "x", ... )

kde_y = BinnedKernelDensity("KernelPDF_Y",

phsp_y, ntuple, "y", ... )

# Factorised density

fact = FactorisedDensity("FactPDF",

phsp,kde_x,kde_y)

# Create kernel PDF with factorised approximation

kde_factappr = BinnedKernelDensity(

"KernelPDFWithFactApprox",phsp, ntuple,

"x","y", # Variables

100,100, # Numbers of bins

0.4, 0.4, # Kernel widths

fact, # Approximation PDF

100000) # Sample size for MC convolution
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ParamPhsp: Parametric phase space

More complex phase spaces can be defined with ParametricPhaseSpace

# First create 1D phase space for variable x

xphsp = OneDimPhaseSpace("PhspX", -1., 1.)

# Now create parametric phase space for (x,y)

# where limits on variable y are functions of x

phsp = ParametricPhaseSpace("PhspParam", xphsp,

"-sqrt(1-x^2)", # Lower limit

"sqrt(1-x^2)", # Upper limit

-1., 1. # Global limits of y

)

# Create approximation PDF

approxpdf = FormulaDensity("TruePDF", phsp,

"1.-0.8*x^2-0.8*y^2")

# Create kernel PDF from the generated sample.

# Use polynomial shape as an approximation PDF

kde = BinnedKernelDensity("KernelPDF",

phsp, # Phase space

ntuple, # Input ntuple

"x","y", # Variables to use

200,200, # Numbers of bins

0.2, 0.2, # Kernel widths

approxpdf, # Approximation PDF

100000 # Sample size for MC convolution

)
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TwoDimPolyPdf: Fitted 2D polynomial

You probably don’t need Meerkat if your PDF fits well by a polynomial,
but polynomial PDF can also be a good approximation PDF. Meerkat can
do unbinned 1D and 2D polynomial fits.

# First create 1D phase space for variable x

xphsp = OneDimPhaseSpace("PhspX", -1., 1.)

# Now create parametric phase space for (x,y)

# where limits on variable y are functions of x

phsp = ParametricPhaseSpace("PhspParam", xphsp,

"-sqrt(1-x^2)", # Lower limit

"sqrt(1-x^2)", # Upper limit

-1., 1. # Global limits of y

)

poly = PolynomialDensity("PolyPDF",

phsp, # Phase space

4, # Power of the polynomial

ntuple, # input ntuple

"x", "y",# Variables

200000 # Sample for MC normalisation

)
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DalitzPdf: Dalitz plot

md = 1.8646 # D0 mass

ma = 0.497 # KS0 mass

mb = 0.139 # Pi mass

mc = 0.139 # Pi mass

# Define Dalitz phase space for D0->KsPiPi

# Variables are x=m^2(ab), y=m^2(ac)

phsp = DalitzPhaseSpace("PhspDalitz",

md, ma, mb, mc)

# Create polynomial approximation PDF

poly = PolynomialDensity("PolyPDF",

phsp, # Phase space

2, # Power of polynomial

ntuple, # Input ntuple

"x","y", # Ntuple variables

50000) # Sample for MC normalisation

# Create kernel PDF from the generated sample

kde = BinnedKernelDensity("KernelPDF",

phsp, # Phase space

ntuple, # Input ntuple

"x","y", # Variables to use

200,200, # Numbers of bins

0.4, 0.4,# Kernel widths

poly, # Approximation PDF

50000) # Sample for MC convolution
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