Approved long baseline experiments (non-CNGS)

MINOS

NOVA

T2K

Christos Touramanis

NEU2012 meeting CERN 18 March 2009

MINOS – NOVA - T2K current non-European long baseline projects

<u>Note:</u> Significant European contribution to MINOS Substantial European contribution to T2K

- Discovery
- Precision
- CP search ?
- PMNS?

Neutrino oscillations and Long Baseline Experiments

Mass hierarchy

normal inverted

Is θ₁₃ non-zero?
CP violation?

- Is 0₂₃ 450?
- Which hierarchy?

MINOS

- 150 members, mainly American
- Some Europeans (UK, France, Poland, Greece)
- Data-taking since 2005
- 735km, NuMI@FNAL: low and high E runs
- Antineutrino running possible
- Magnetized iron / scintillator tracking calorimeter detectors
- 5.4kton Far detector
- 0.98kton Near detector

MINOS – disappearance results

 $\frac{\Delta m_{32}^2}{\sin^2(2\theta_{23}) > 0.90} \times 10^{-3} \text{ eV}^2(68\% \text{ C.L.})}{\sin^2(2\theta_{23}) > 0.90} \times (90\% \text{ C.L.})}$ With $\chi^2/\text{NDF}=90/97$

MINOS – appearance results, MORIOND EW 09

Not conclusive; more statistics (double) to be analyzed (My) current reading of this: after the first MINOS result we do not have any stronger limit than before Early evidence and discovery by T2K (and Double-CHOOZ) remains a strong possibility

T2K

- 385 members, 64 Institutes, 12 countries
- 28 institutes from 7 European countries
- Neutrino Beamline construction: 2004-2008; commissioning: 2008-09; first neutrinos: next month
- Beamline cost: \$160M
- Near Detector cost: ~\$30M
- Beware of financial basis (Japanese ~ CERN ?)

Main T2K Science Objectives

- **Discovery**: search for non-zero θ_{13}
 - Increase current sensitivity by ~10
 - Outcome crucial for international neutrino programme planning
 - Opens up search for neutrino CP violation
- Precision: θ_{23} , Δm^2_{23}
 - World's most precise measurements $\sin^2 2\theta_{23} \rightarrow \approx 1\% \qquad \Delta m_{23}^2 \rightarrow \approx 2\%$
 - Is 23 oscillation maximal?
 - New symmetry of Nature?
- Neutrino scattering below 1GeV
 - Precision measurements necessary to achieve previous goals
- Clarify mass hierarchy (combined with NOvA ?)

T2K

- Super-Kamiokande IV:
- Fully refitted
- New electronics (eliminate dead-time)
- Taking data since 6 months

T2K appearance sensitivity

T2K Discovery Potential on $v_{\mu} \rightarrow v_{e}$ as a Function of Integrated Power

Integrated Power (10⁷Mw·sec: ~1Mw×Effective 1 Year Experimental Period)

Off-axis neutrino beam

- Quasi-monochromatic v_u beam
- L/E tuned for max sensitivity
- Smaller intrinsic v_e fraction
- Reduced high-E non-CCQE backgrounds

Main T2K measurements

 v_{e} appearance

The challenges:

- Knowledge of initial beam content and kinematics
- Knowledge of backgrounds

J-PARC construction since 2001

First funds for neutrino project approved in December 2003!

LINAC: commissioned in January 2007

Parameter	Unit	Design	Commissioning goal	Achiev	ved to date
Outputenergy	MeV	181	181	181	
Peak current	mA	30	25	25	30 (RFQ)
Linac beam power	kW	36	1.2	1.2 (w/o	chop)
Momentum spread	%	< ± 0.2	< ± 0.2	25 mA: (0.16 (FWHM)
Orbit distorsion	mm	± 1	± 1	± 1	
Beam position jitter	mm	± 0.1	± 0.1	± 0.2	
Peak current fluctuation	%	± 1	± 1	± 1	

3GeV RCS, achieved: 70s @ 213kW, singe-bunch corresponding to 353kW

Main Ring

- Phase 1: 30GeV
- Commissioned

- First neutrinos: April 2009
- Aim to deliver 100kW*10⁷s before summer 2010
- Leading to T2K θ_{13} sensitivity below CHOOZ limit

Primary Beam-line

Assumed Beam Loss 750W@Prep.

> 250W@FF. (1W/m @ ARC)

Superconducting Magnet System

Installation Completed In Dec. 2008
Cool Down started Jan 2009
Excitation Test started Feb 2009

•4400A (30GeV nominal)

- quench tests for all the magnets
- •48 hour excitation test
- •5000A excitation test
 - after full magnet quench
- •Main SC Magnet performance •OK for spring beam test

19

Neutrino target volume

1000m3, 470ton, Helium-filled, passed vacuum test

Status of neutrino facility construction

The near detector: ND280

Off-axis detector

37m

The off-axis detector

Near Detector subsystems

P0D module

ECAL module

Sensitivity: v_e appearance Discovery of v_e appearance ($\theta_{13}, \Delta m_{13}$)

>10 times improvement from CHOOZ 2

NOvA

- 180 members from 28 institutes, mainly American
- Off-axis, 810kM
- NuMI beam upgrade to 700kW: \$51M
- Liquid scintillator in 4cm x 6cm cells
- 14kton far detector: \$152M+\$60M enclosure
- 222ton near detector: \$10M+\$5M enclosure
- Funded in FY09 budget, ground breaking in far site starts 1st May
- First data (2.5kton) 2012
- Full detector 2014

Where do we go from there?

- J-PARC plan for 1.7MW before 2015
- Various FNAL power upgrade scenarios including Project-X
- However technical feasibility must be demonstrated, funding nowhere near assured, plus US long-term funding instability problem
- Should CERN keep superbeam option open for Europeans to be able to regain leadership and profit from scientific opportunities that may arise?