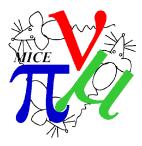

Physics programme and Step IV data taking plan

C. Rogers, ASTeC Intense Beams Group Rutherford Appleton Laboratory

Status

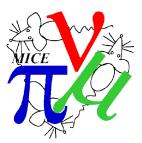

- Completed all Step I publications
 - Published: Pion contamination in the MICE muon beam
 - Published: Electron-Muon Ranger: performance in the MICE Muon Beam
- Demo Paper distributed to collaboration
- Two further publications in progress
 - Direct measurement of emittance using the MICE scintillating fibre tracker
 - Multiple Coulomb Scattering of muons in Lithium Hydride
 - See subsequent talks
- Next round of publications brewing
 - Direct measurement of transfer matrix
 - Magnetic alignment of the channel
 - Beam transport in SSU/FC/SSD lattice
- Plans
 - Step IV data taking plan
- Not included Demo descope work

Analysis of Existing Data

C. Rogers, ASTeC Intense Beams Group Rutherford Appleton Laboratory

Data taking up to CM44

June/July 2015	Tracker Commissioning incl. SSD at 1.5 T
September 21 st – 22 nd	SSU at 1.5 T
September 25 th – 29 th	Ckov momentum scan
	Magnetic field remnant study
	Beam polarisation measurement
October 7 th	4 T in SSU
October 14 th	TOF0 alignment
December 3 rd - 7 th	FC alignment study
December 13 th - 16 th	Scattering in Xenon and empty
February 23rd – March 24 ^t	^h Alignment studies
	Empty absorber data
	Scattering in LiH
	Pionic beamline studies


Data taking since CM44

Date	Data Taken
July 8 th - 10 th	TOF Calibration; Detector Alignment
July 14 th - 15 th	FC alignment study (+50 A)
July 16 th - 17 th	Detector alignment; proton absorber study
July 19th (2.5 hrs)	SSD only at 140 A
July 20 th (5 hrs)	SSU + SSD at 140 A
July 21 st - 25 th	FC alignment study (+/- 50 A)
July 26 th - 27 th	SSU + FC + SSD at 140 / 50 / 140 A
July 27 th - 28 th	SSU only at 140 A

I don't have much on data taken in the last week

Detector Alignment (F. Drielsma)

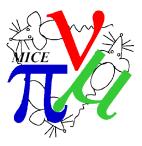
See talk at CM44 for method

Aligned to TOF0/1 axis (in MICE hall coordinate system)

	$x_T [mm]$	$y_T [{\sf mm}]$	$lpha_T$ [mrad]	eta_T [mrad]
TKU	$0.209{\pm}0.119$	-1.670 ± 0.114	3.286±0.041	0.727±0.041
TKD	$-2.280{\pm}0.117$	$2.387{\pm}0.117$	-0.660 ± 0.041	$1.030{\pm}0.041$

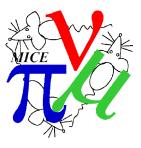
Table: September-December 2015

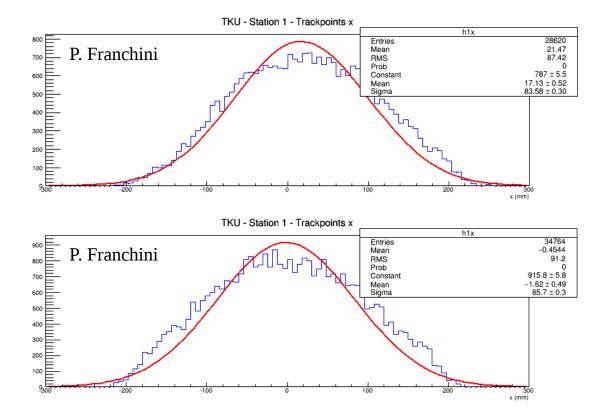
	$x_T [{\sf mm}]$	$ y_T [mm]$	$lpha_T$ [mrad]	eta_T [mrad]
TKU	-0.297±0.240	-0.474±0.237	3.201±0.078	$0.912{\pm}0.073$
TKD	-2.307±0.223	$2.402{\pm}0.220$	-0.615 ± 0.070	$1.363{\pm}0.072$


Table: February-March 2016

	$x_T [{\sf mm}]$	$y_T [{\sf mm}]$	$lpha_T$ [mrad]	eta_T [mrad]
TKU	2.281±0.094	-0.482±0.093	3.510±0.030	-0.293±0.025
TKD	-2.915 ± 0.086	$2.899{\pm}0.086$	-1.234 ± 0.024	0.933±0.024
Table: July 9/10 2016				

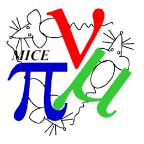
		y [mm]		β [mrad]
TKU	2.008 +/- 0.183	-0.247 +/- 0.170	3.545 +/- 0.053	-0.270 +/- 0.046
TKD	-3.015 +/- 0.157	3.009 +/- 0.155	-1.113 +/- 0.045	1.075 +/- 0.045

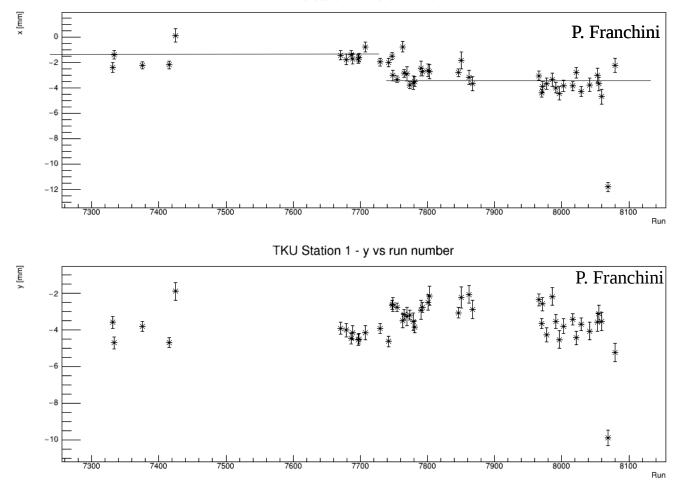

Table: July 16/17 2016 - preliminary


Beamline Commissioning

- Renewed interest in the beamline
 - Would like to run with pions
 - Means reviewing/reoptimising the beamline and matching
- Various open issues outstanding for ~ 5 years
 - What is source of disagreement between MC and data?
 - Do we understand the matching?
 - Do we understand the momentum selection?
 - Do we understand the input beam?
 - How stable is the beamline?
 - Hysteresis, etc

Discrepancy between MC and Data

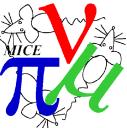


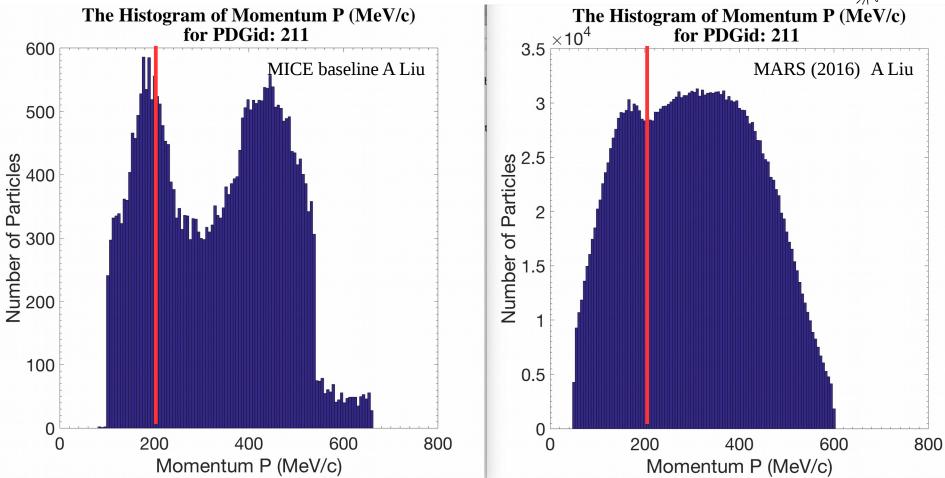


D2 at 78.9 A Mean(x) = 21.5 mm

D2 at 70.0 A Mean(x) = -0.5 mm

Long term stability





TKU Station 1 - x vs run number

Reference runs (DS on)

Target Simulation

Pion momentum distribution from the target

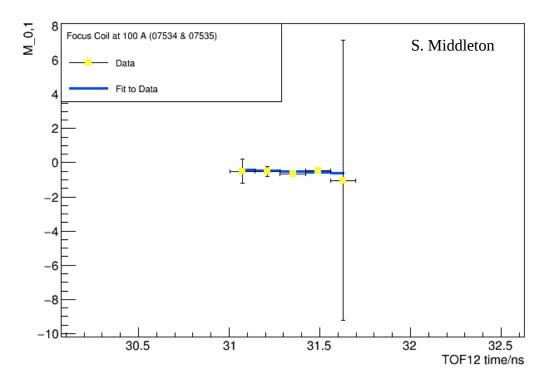
Focus Coil Alignment (Transfer Matrix Measurement)

- Believed to be first direct measurement of transfer matrix from particle tracks (check)
- Transfer matrix describes lattice optics independent of transverse beam properties
 - Pz dependent

$$x^{d} = M_{00} + M_{01}x^{u} + M_{02}Px^{u} + M_{03}y^{u} + M_{04}Py^{u},$$
 (1)

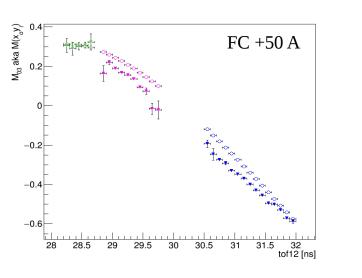
$$Px^{d} = M_{10} + M_{11}x^{u} + M_{12}px^{u} + M_{13}y^{u} + M_{14}Py^{u}, \qquad (2)$$

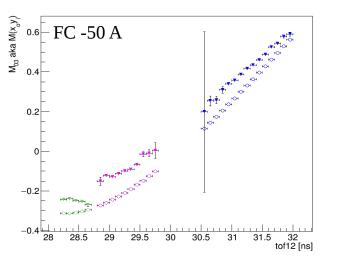
$$y^{d} = M_{20} + M_{21}x^{u} + M_{22}px^{u} + M_{23}y^{u} + M_{24}Py^{u}$$
(3)

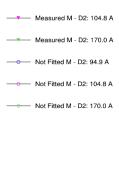

$$Py^{d} = M_{30} + M_{31}x^{u} + M_{32}px^{u} + M_{33}y^{u} + M_{34}Py^{u}$$
(4)

Dipole terms arise due to misalignment Focussing terms Describe optical properties of the magnet

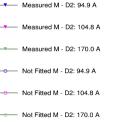
Focus Coil Alignment (Transfer Matrix Measurement)

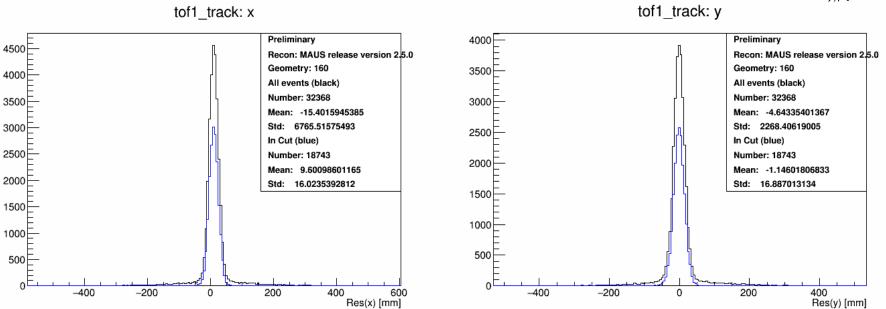



- Believed to be first direct measurement of transfer matrix from particle tracks (check)
- Data from December 2015 using FC in flip mode
- Limited statistics; limited momentum range
 - no DS, mu beam



Focus Coil Alignment (Transfer Matrix Measurement)

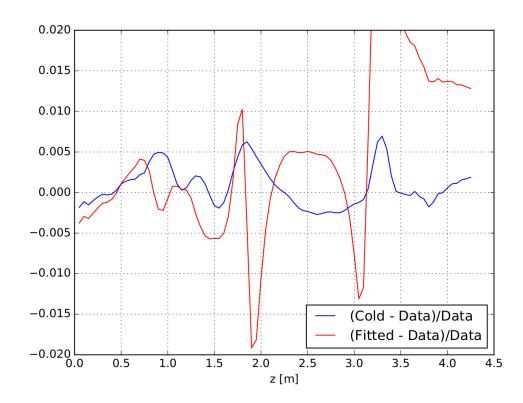




Measured M - D2: 94.9 A

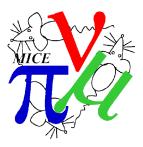
- Data from July in solenoid mode
- DS operational
- Pion beam
- More data, more momenta
- Systematic error to be understood better
- Need July detector alignment to be tied into recon

Residuals-Based analysis

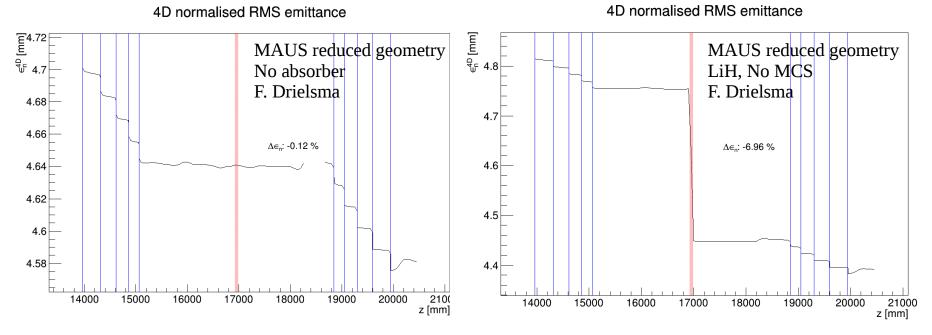


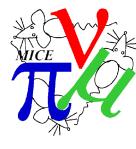
- Extrapolate tracks between detectors, through the fields
 - E.g. compare extrapolated tracks from TKU to TOF1
- Note the offset of the mean
 - Indicates magnet misalignment
 - Magnet misalignment needs to be quantified
- → Tie this into July data

- Tying this back into the magnet mapping
 - Plot shows (calculated field measured field)
- Fit is overconstrained so a-priori calculation has smaller residuals

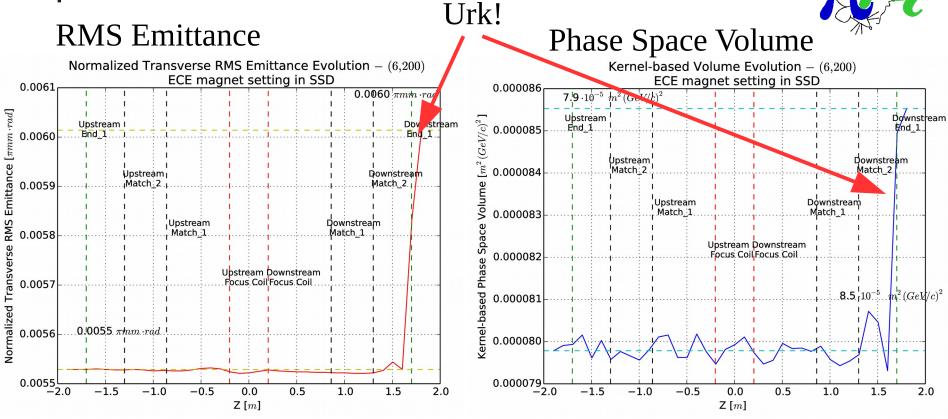

Red – fit to mapping data (J. Langlands) Blue – calculated field (H. Witte)

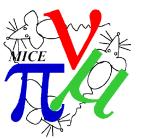
Planning for Future User Runs

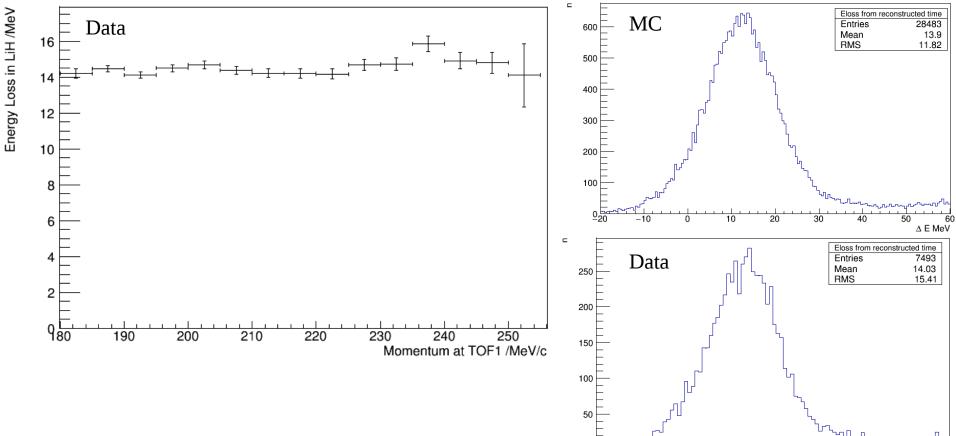

C. Rogers, ASTeC Intense Beams Group Rutherford Appleton Laboratory



- Step IV Run Settings are now stable
 - Little/no change since CM44
- Run plan with a "pragmatic baseline" assuming SSU M1/M2, FC, SSD (no Ms) and solenoid mode
 - Hope to run using this baseline in the next user cycle
- Now need to work up a run plan for 2016/03, with feedback from the magnet group on their status

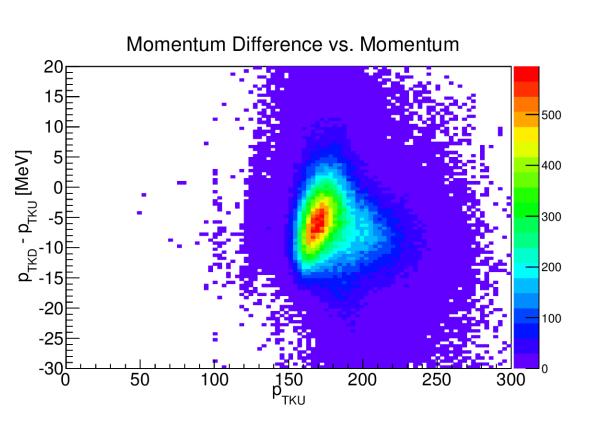

- Outstanding issues
 - Simulation/validation in full MAUS geometry?
 - Can we observe cooling without M2D i.e. transmission bias?
 - Can we manage non-linearities in the analysis?
- Cross check with reduced geometry looks okay
 - Move on to full geometry


Non-linearities

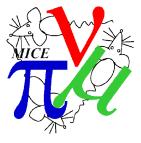


- Can we deal with beam deformation/non-linear optics issues?
 - Smooth the particle distribution and then measure volume occupied by the beam (KDE technique)
 - Still see effect of beam deformation in the phase space volume calculation

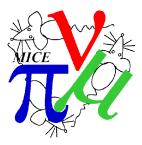
Energy Loss Measurement (Field off)



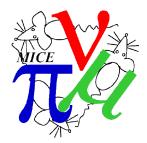
Use TOF01 vs TOF12 to estimate energy loss in absorber


- Assume some energy loss model for intervening material
- Test with empty absorber data and field-on data

 $\Delta E MeV$


Energy Loss Measurement (Field on)

- Starting to dig into energy loss measurement
- First pass indicates significant instrumental effects
 - Muon beam
 - No absorber


- Full alignment and tolerances analysis has been completed for the demonstration of ionisation cooling lattice
 - Alan Young
- Significant body of work to understand whether Demo can run without SSD
 - Yes it can, EMR is a nice detector!
 - Durga Rajaram, many others

C. Rogers, ASTeC Intense Beams Group Rutherford Appleton Laboratory

Summary

- Step I publications are complete
- Demo paper has gone to referees
- Two further collaboration publications are in progress
- More are starting to work their way through the pipeline
- Physics group is looking forward to full magnet operation
- A lot of fun to come!