Beam-based detector alignment in the MICE Muon Beam

François Drielsma
University of Geneva

July 28, 2016

Surveys as the baseline for the alignment

Known to great accuracy from the surveys:
\rightarrow Position of each detector module along the beam line, z_{M}
$\begin{aligned} \rightarrow & \text { Misalignment and Tait-Bryan angles } \\ & \text { of the PID detectors } x_{M}, y_{M}, \alpha, \beta, \gamma\end{aligned}$
$\begin{aligned} \rightarrow & \text { Misalignment and Tait-Bryan angles } \\ & \text { of the PID detectors } x_{M}, y_{M}, \alpha, \beta, \gamma\end{aligned}$
\rightarrow Misalignment of the tracker stations wrt each other (CMM)

Analysis measurements:
\rightarrow Misalignment and Tait-Bryan angles of the two trackers

Analysis method

As the parameters of the TOF detectors are well understood:
\rightarrow the axis that joins the centres of TOF1/2 is used the reference axis
\rightarrow the axes of the two trackers are aligned with respect to it

For each straight track, 4 parameters from the pattern recognition code:
\rightarrow The position of the track at the centre x, y ($+z$ from survey)
\rightarrow The gradients of the track x^{\prime}, y^{\prime} (fits of 5 stations)
\rightarrow Local coordinates only (no assumption on the geometry)

Analysis method (2)

The position of the space point in global coordinate translates to

$$
\left(\begin{array}{l}
\xi \tag{1}\\
v \\
\zeta
\end{array}\right)=\left(\begin{array}{l}
x-\gamma y+\beta z+x_{\mathrm{M}} \\
y+\gamma x-\alpha z+y_{\mathrm{M}} \\
z-\beta x+\alpha y+z_{\mathrm{M}}
\end{array}\right)=\left(\begin{array}{c}
x-\gamma y+x_{\mathrm{M}} \\
y+\gamma x+y_{\mathrm{M}} \\
\beta x+\alpha y+z_{\mathrm{M}}
\end{array}\right)
$$

With x_{12} the coordinate predicted by the TOF12 axis, we have, on average

$$
\begin{gather*}
\left\langle\xi_{12}-\xi\right\rangle=0 \\
\left\langle\xi_{12}-x\right\rangle=-\gamma\langle y\rangle+x_{M} \tag{2}
\end{gather*}
$$

and $\left\langle\xi_{12}-x\right\rangle$ can easily be measured as a function of a binned out $\langle y\rangle$ to find x_{M} and a first estimate of the roll γ. Similarly:

$$
\begin{gather*}
\left\langle v_{12}-y\right\rangle=\gamma\langle x\rangle+y_{M} \\
\left\langle\xi^{\prime 2}-x^{\prime}\right\rangle=-\gamma\left\langle y^{\prime}\right\rangle+\beta \tag{3}\\
\left\langle v^{\prime 12}-y^{\prime}\right\rangle=\gamma\left\langle x^{\prime}\right\rangle-\alpha
\end{gather*}
$$

Sampling bias

Formulas only true for an unbiased sample of particles. In a perfect world, the sample mean and the true mean are the same and we have:

$$
\begin{equation*}
x_{12}-x \sim N\left(x_{M}, \theta_{E}^{2} \Delta z^{2}\right) \rightarrow\left\langle x_{12}-x\right\rangle=x_{M} \tag{4}
\end{equation*}
$$

But in fact, if the true mean \bar{x} is non-zero, the true spread is σ_{x} and the half width of the sampling is x_{L}, the sample mean reads

$$
\begin{aligned}
\hat{x} & =\int_{-x_{L}}^{x_{L}} x \times N\left(\bar{x}, \sigma_{x}^{2}\right) d x \\
& =\frac{\bar{x}}{2}\left(\operatorname{erf}\left[\frac{x_{L}-\bar{x}}{\sqrt{2} \sigma_{x}}\right]-\operatorname{erf}\left[\frac{-x_{L}-\bar{x}}{\sqrt{2} \sigma_{x}}\right]\right) \\
& -\sqrt{\frac{2}{\pi}} \sigma_{x} \exp \left[\frac{-x_{L}^{2}-\bar{x}^{2}}{2 \sigma_{x}^{2}}\right] \sinh \left[\frac{x_{L} \bar{x}}{\sigma_{x}^{2}}\right]
\end{aligned}
$$

Sampling bias (2)

For a given predicted x_{12}, the distribution of scattering angle reads

$$
\begin{aligned}
f_{x_{12}}(\theta) & =\frac{C_{12}}{\sqrt{2 \pi} \theta_{E}} \exp \left[-\frac{1}{2} \frac{\theta^{2}}{\theta_{E}^{2}}\right] \\
& \times D_{\theta}\left(\frac{-x_{L}-x_{12}}{\Delta z}, \frac{x_{L}-x_{12}}{\Delta z}\right)
\end{aligned}
$$

Scattering angle distribution

$$
\begin{aligned}
f(\theta) & =\int_{-x_{L}}^{x_{L}} g\left(x_{12}\right) f_{x_{12}}(\theta) d x_{12} \\
& =C \mathcal{N}\left(0, \theta_{0}^{2}\right) \int_{-x_{L}-\theta \Delta z H(-\theta)}^{x_{L}-\theta \Delta z H(\theta)} \frac{C_{12}}{\sqrt{2 \pi} \sigma_{x_{12}}} \exp \left[-\frac{1}{2} \frac{\left(x_{12}-\overline{x_{12}}\right)^{2}}{\sigma_{x_{12}}^{2}}\right] \mathrm{d} x_{12}
\end{aligned}
$$

For a given distribution of $x_{12}, g\left(x_{12}\right)$, this globally translates to

Sample selection

No control on the natural mean \bar{x} of the beam but can select an unbiased sample of events that we expect to be contained.
\rightarrow The sample has to be composed of particles with a zero mean scattering angle, i.e. $\langle\theta\rangle=0$ so that $\left\langle x_{12}-x\right\rangle=x_{M}$
\rightarrow On a particle by particle basis, reject the ones likely to scatter out
The boundaries of the tracker are so that $x_{L}^{2}+y_{L}^{2}=R_{L}^{2}$, with R_{L} the radius of the fiducial circle of the tracker stations. If the track is predicted to hit (x, y) and the effective mean scattering angle is θ_{E}, reject the track if the condition

$$
\left(|x|+2 \theta_{E} \Delta_{z}\right)^{2}+\left(|y|+2 \theta_{E} \Delta_{z}\right)^{2}<R_{L}^{2}
$$

is not satisfied.

Tracker alignment fitting algorithm

Fit TOF12 distribution for PID:
\rightarrow Accumulate 5000 tracks
\rightarrow Identify peaks with TSpectrum, fit with 2-peaks Gaussian, reject $e^{ \pm}$tag muons and pions
\rightarrow Tag muons and pions

Time-of-flight

Reconstruct a gross momentum from TOF12 under PID assumption

$$
\rightarrow p_{12}=m_{i} / \sqrt{\left(c t / D_{12}\right)^{2}-1}
$$

Infer the effective mean scattering angle θ_{E} from PID and p_{12}
$\rightarrow \theta_{E}=\frac{13.6 \mathrm{MeV} / c}{\beta_{12} p_{12} c} \sqrt{x / X_{0}}\left[1+0.038 \ln \left(x / X_{0}\right)\right]$
Plot $\left\langle x_{12}-x\right\rangle$ as a function of y, fit with a line so that
\rightarrow The gradient of the line fit is $-\gamma$
\rightarrow The y-interceptof the line fit is x_{M}
\rightarrow Take the first fit as an input, repeat 4 times

Effects of the cut on the particle sample (x, y)

Beam profile at TKD

TKU XY profile at centre

TKD XY profile at centre

Effects of the cut on the particle sample $\left(x^{\prime}, y^{\prime}\right)$

Gradients at TKU

Gradients at TKD

TKU XY angular distribution

TKD XY angular distribution

Results for a single run $(07418,280 \mathrm{MeV} / \mathrm{c}$ pion beam)

Example of results 7418
$\rightarrow 8$ pairs of plots produced per data set
\rightarrow These show the best fit for the tracker upstream pitch α
\rightarrow The fit converges at the second iteration
\rightarrow In this plot and the subsequent ones, the roll is ignored due to a resolution being poorer the expected order of it (10 mrad vs 1 mrad)

Residual yp between tku and the TOF12 axis

Alignment component α (tku): 3.163 +/- 0.094

Stability of the fits across 2015 (2015/09-2015/12)

Pitch of the trackers

Horizontal offset of the trackers

Yaw of the trackers

Vertical offset of the trackers

Alignement in February-March 2016

Component α of the alignment

Component \#x of the alignment

Component β of the alignment

Alignement in July 2016

Component α of the alignment

Component β of the alignment

Component \#y of the alignment

Best global fits

	$x_{T}[\mathrm{~mm}]$	$y_{T}[\mathrm{~mm}]$	$\alpha_{T}[\mathrm{mrad}]$	$\beta_{T}[\mathrm{mrad}]$
TKU	0.209 ± 0.119	-1.670 ± 0.114	3.286 ± 0.041	0.727 ± 0.041
TKD	-2.280 ± 0.117	2.387 ± 0.117	-0.660 ± 0.041	1.030 ± 0.041

Table: September-December 2015

	$x_{T}[\mathrm{~mm}]$	$y_{T}[\mathrm{~mm}]$	$\alpha_{T}[\mathrm{mrad}]$	$\beta_{T}[\mathrm{mrad}]$
TKU	-0.297 ± 0.240	-0.474 ± 0.237	3.201 ± 0.078	0.912 ± 0.073
TKD	-2.307 ± 0.223	2.402 ± 0.220	-0.615 ± 0.070	1.363 ± 0.072

Table: February-March 2016

	$x_{T}[\mathrm{~mm}]$	$y_{T}[\mathrm{~mm}]$	$\alpha_{T}[\mathrm{mrad}]$	$\beta_{T}[\mathrm{mrad}]$
TKU	2.281 ± 0.094	-0.482 ± 0.093	3.510 ± 0.030	-0.293 ± 0.025
TKD	-2.915 ± 0.086	2.899 ± 0.086	-1.234 ± 0.024	0.933 ± 0.024

Table: July 2016

Cross check global alignment

Make the pattern recognition variables global using the optimal parameters

$$
\left(\begin{array}{l}
\xi \tag{5}\\
v \\
\zeta
\end{array}\right)=\left(\begin{array}{c}
x-\gamma^{*} y+x^{*} \\
y+\gamma^{*} x+y^{*} \\
\beta^{*} x+\alpha^{*} y+z^{*}
\end{array}\right),\binom{\xi^{\prime}}{v^{\prime}}=\binom{x^{\prime}-\gamma^{*} y^{\prime}+\beta^{*}}{y^{\prime}+\gamma^{*} x^{\prime}-\alpha^{*}}
$$

\rightarrow Propagate TKU tracks in TOF1 $\psi_{U, i}=\psi+\psi^{\prime}\left(\zeta_{i}-\zeta_{U}\right), \psi=\xi, v$
\rightarrow Propagate TKD tracks in TOF2, KL, EMR $\psi_{D, i}=\psi+\psi^{\prime}\left(\zeta_{i}-\zeta_{D}\right)$
\rightarrow Check that $\left\langle\psi_{U, i}-\psi_{i}\right\rangle \sim 0$ and $\left\langle\psi_{D, i}-\psi_{i}\right\rangle \sim 0$ for each detector

Tracker to tracker alignment (aligned trackers)

TKD-TKU residuals

Gradient residuals

Residuals at the absorber

Azimuthal angle residuals

PID detector alignment (aligned trackers)

TKU-TOF1 residuals

TKD-KL residuals

TKD-TOF2 residuals

TKD-EMR residuals

Conclusions

Highlights of the analysis:
\rightarrow Great alignment from TOF1 all the way to the EMR
\rightarrow Robust sample selection and fitting, consistency through step IV
\rightarrow Analysis performed on all the alignment data currently held
\rightarrow Alignment code streamlined and easy to run, uploaded to: https://code.launchpad.net/ francoisdrielsma/maus/detector_alignment
\rightarrow Alignment requires 1 M triggers at TOF1 with the 300 or $400 \mathrm{MeV} / \mathrm{c}$ pion beam, matter of 5 hours with DS
\rightarrow Showed movement between March and July but none after powering the SS or FC in July
\rightarrow Alignment note fully written, under review with CR

