Emittance and cooling measurement

François Drielsma

University of Geneva

July 28, 2016

► < ∃ ►</p>

Emittance definition

The RMS normalised emittance is expressed as

$$\epsilon_n = \frac{1}{m} \sqrt[4]{D} \tag{1}$$

with D the determinant of the covariance matrix defined by

$$D = \det \begin{bmatrix} V_{xx} & V_{xp_x} & V_{xy} & V_{xp_y} \\ V_{p_xx} & V_{p_xp_x} & V_{p_xy} & V_{p_xp_y} \\ V_{yx} & V_{yp_x} & V_{yy} & V_{yp_y} \\ V_{p_yx} & V_{p_yp_x} & V_{p_yy} & V_{p_yp_y} \end{bmatrix} = \sum_{\beta} V_{\alpha\beta} C_{\alpha\beta}, \, \forall \alpha$$
(2)

with $V_{\alpha\beta}$ the covariance of α and β defined as

$$V_{\alpha\beta} = \frac{1}{N} \sum_{i=1}^{N} (\alpha_i - \langle \alpha \rangle) (\beta_i - \langle \beta \rangle) = \langle \alpha \beta \rangle - \langle \alpha \rangle \langle \beta \rangle,$$
(3)

and $C_{\alpha\beta}$ the (α,β) -cofactor of the covariance matrix.

François Drielsma (UniGe)

Emittance error propagation

The covariances error correlation can be expressed as a rank-4 tensor,

$$\Sigma^V = A \Sigma A^T, \tag{4}$$

with $\Sigma_{i\alpha\beta j} = \delta_{ij}\delta_{\alpha\beta}\sigma_{\alpha_i}^2$ and A the derivative tensor:

$$A_{\alpha\beta\eta k} = \frac{\partial V_{\alpha\beta}}{\partial \eta_k} = \frac{1}{N} \left[\delta_{\eta\alpha} \left(\beta_k - \langle \beta \rangle \right) + \delta_{\eta\beta} \left(\alpha_k - \langle \alpha \rangle \right) \right].$$
(5)

Inputting equation 5 into equation 4 yields

$$\Sigma_{\alpha\beta\kappa\lambda} = \frac{1}{N^2} \sum_{i=1}^{N} \left[\delta_{\alpha\kappa} \sigma_{\alpha_i}^2 \left(\beta_i - \langle \beta \rangle \right) \left(\lambda_i - \langle \lambda \rangle \right) \right. \\ \left. + \delta_{\alpha\lambda} \sigma_{\alpha_i}^2 \left(\beta_i - \langle \beta \rangle \right) \left(\kappa_i - \langle \kappa \rangle \right) \right. \\ \left. + \delta_{\beta\kappa} \sigma_{\beta_i}^2 \left(\alpha_i - \langle \alpha \rangle \right) \left(\lambda_i - \langle \lambda \rangle \right) \right. \\ \left. + \delta_{\beta\lambda} \sigma_{\beta_i}^2 \left(\alpha_i - \langle \alpha \rangle \right) \left(\kappa_i - \langle \kappa \rangle \right) \right]$$
(6)

Emittance error propagation (2)

This error tensor propagates into the determinant error through

$$\sigma_D^2 = \sum_{\alpha\beta\kappa\lambda} \frac{\partial D}{\partial V_{\alpha\beta}} \Sigma_{\alpha\beta\kappa\lambda}^V \frac{\partial D}{\partial V_{\kappa\lambda}}$$
$$= \frac{4}{N^2} \sum_{i=1}^N \sum_{\alpha\beta} \left[\left(C^T \hat{\sigma}^i C \right)_{\alpha\beta} \left(\alpha_i - \langle \alpha \rangle \right) \left(\beta_i - \langle \beta \rangle \right) \right]$$
(7)

with $\hat{\sigma}^i_{\alpha\beta} = \delta_{\alpha\beta}\sigma^2_{\alpha_i}$, the diagonal matrix that contains the errors. This eventually yields a measurement error on the emittance of

$$\sigma_{\epsilon_n} = \left| \frac{\partial \epsilon_n}{\partial D} \right| \sigma_D = \frac{D^{-3/4}}{4m} \sigma_D \tag{8}$$

(日) (周) (三) (三)

Other quantities of interest

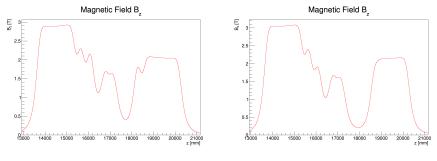
 \rightarrow Optical beta function in the two projections:

$$\beta_x = \frac{V_{xx}}{\det(\epsilon_x^{2D})} \qquad \beta_y = \frac{V_{yy}}{\det(\epsilon_y^{2D})}$$
with
$$\epsilon_q^{2D} = \begin{bmatrix} V_{qq} & V_{qq'} \\ V_{q'q} & V_{q'q'} \end{bmatrix}, \quad q' = p_q/p_z$$
(9)

 \rightarrow Mean total momentum:

$$|\vec{p}| = \sqrt{p_x^2 + p_y^2 + p_z^2}$$
(10)

 \rightarrow Transmission in the cooling channel

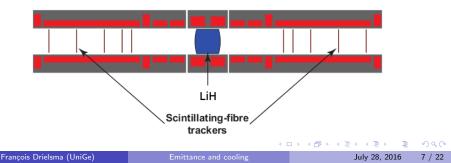

$$T_i = \frac{N_i}{N_0} \tag{11}$$

8 configurations under investigation

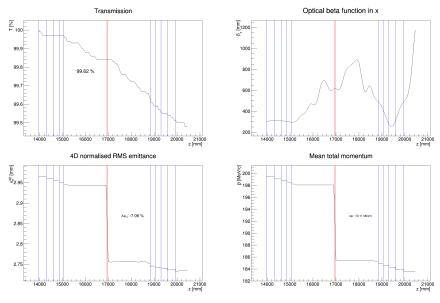
 \circ Two solenoid modes 200 MeV/c magnet settings (from A. Liu):

	ECE_U [%]	$M2_U$	$M1_U$	FC	$M1_D$	$M2_D$	ECE_D [%]
w/ $M2_D$	0.72	219.8	162.7	55.9	0	205.66	0.51
w/o $M2_D$	0.76	236.8	135.2	56	0	0	0.54

- 3 mm and 6 mm input normalised emittance
- With or without absorber (65 mm of LiH in this study)

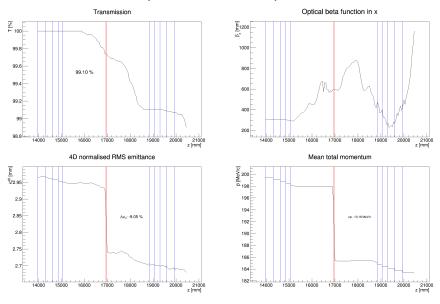

Emittance and cooling

Geometries


In first approximation, a simplified geometry was used

- $\rightarrow\,$ Two trackers in, 5 stations/tracker, 3 planes/station, full geometry
- $\rightarrow\,$ A simple 65 mm-thick, 225 mm in radius cylinder of LiH (or not)
- $\rightarrow\,$ Field maps generated in MAUS from the cooling channel currents
- \rightarrow Fixed emittance input beam at 13800 m (just before TKUS5)
- $\rightarrow\,$ No momentum spread in the beam

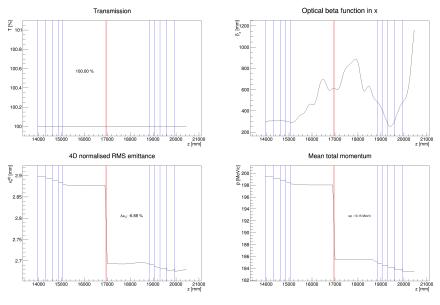
The simulations were also run with the full MAUS geometry and the same input beam, it did not have any significant effect on the measurements.


3mm, M2-on, LiH (no fiducial)

François Drielsma (UniGe)

July 28, 2016 8 / 22

3mm, M2-on, LiH (150 mm fiducial)



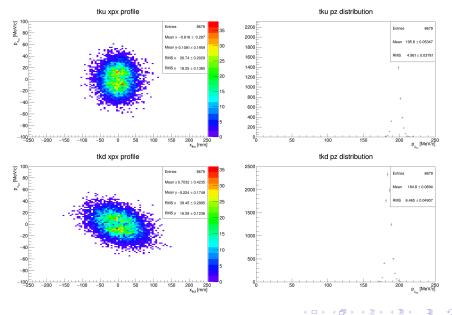
François Drielsma (UniGe)

July 28, 2016 9 / 22

э

3mm, M2-on, LiH (150 mm fiducial+through)

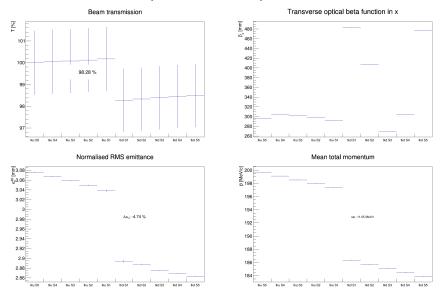
François Drielsma (UniGe)


Emittance and cooling

July 28, 2016 10 / 22

-

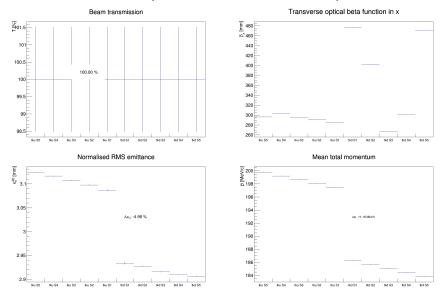
・ロト ・回ト ・ヨト ・


Reconstruction

François Drielsma (UniGe)

July 28, 2016 11 / 22

3mm, M2-on, LiH (reconstructed)



François Drielsma (UniGe)

July 28, 2016 12 / 22

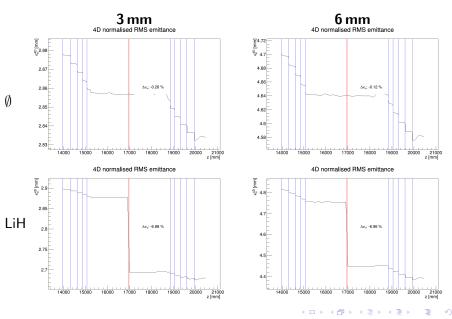
< A > < 3

3mm, M2-on, LiH (reconstructed+through)

François Drielsma (UniGe)

Emittance and cooling

July 28, 2016 13 / 22


A⊒ ▶ < ∃

Summary of all $M2_D$ on configurations

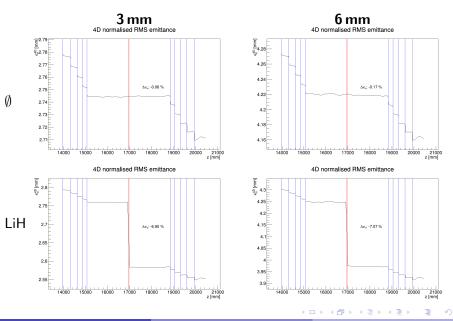
3 mm, LiH	No fid.	Fid.	Fid.+thru	Recon.	Recon.+thru	
$\Delta \epsilon_n^{4D}$	-7.07%	-9.05%	-6.88%	-4.74%	-4.98%	
$\Delta p [{\sf MeV/c}]$	-13.11	-13.18	-13.15	-11.06	-11.19	
Trans.	99.62	99.10	100	98.28	100	
6 mm, LiH	No fid.	Fid.	Fid.+thru	Recon.	Recon.+thru	
$\Delta \epsilon_n^{4D}$	-1.58%	-29.10%	-6.96%	-5.71%	-6.01%	
$\Delta p [{\sf MeV/c}]$	-12.80	-12.78	-12.78	-12.88	-12.86	
Trans. [%]	99.64	88.45	100	103.9	100	
3 mm, ∅	No fid.	Fid.	Fid.+thru	Recon.	Recon.+thru	
$\Delta \epsilon_n^{4D}$	+0.17%	-2.64%	-0.26%	+2.06%	+1.80%	
$\Delta p [{\sf MeV/c}]$	-0.60	-0.49	-0.48	+1.47	+1.3	
Trans.	99.66	98.85	100	98.07	100	
6 mm, Ø	No fid.	Fid.	Fid.+thru	Recon	. Recon.+thru	
$\Delta \epsilon_n^{4D}$	+6.77% -23.82		-0.12%	+0.58%	∕₀ +0.39%	
$\Delta p [{\sf MeV/c}]$	-0.20	-0.19	-0.20	-0.32	-0.30	
Trans.	99.66 86.57		100	103.23	3 100	

-

Emittance reduction in the $M2_D$ on configurations

François Drielsma (UniGe)

Emittance and cooling

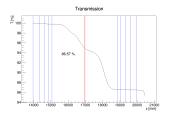

July 28, 2016 15 / 22

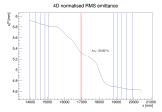
Summary of all $M2_D$ off configurations

3 mm, LiH	No fid.	Fid.		Fid.+thru	Recon.	R	Recon.+thru	
$\Delta \epsilon_n^{4D}$	-6.81%	-12.20%		-6.90%	-6.28%		-5.85%	
$\Delta p [{\sf MeV/c}]$	-12.75	-12.74		-12.74	-12.57		-12.66	
Trans.	99.65	97.60		100	103.50		100	
6 mm, LiH	No fid.	Fid.		Fid.+thru	Recon.	_ F	Recon.+thru	
$\Delta \epsilon_n^{4D}$	0.28%	-43.45%		-7.07%	-10.91%	ó	-5.65%	
$\Delta p [{\sf MeV/c}]$	-12.78	-12.77		-12.78	-12.79		-12.80	
Trans. [%]	99.64	80.71		100	100.34		100	
3 mm, ∅	No fid.	Fid.	Fid.+thru		Recon.	Red	Recon.+thru	
$\Delta \epsilon_n^{4D}$	-0.00%	-6.05%		-0.06%	-0.47%	_	+0.52%	
$\Delta p [{\sf MeV/c}]$	-0.20	-0.19	-0.20		+0.02		-0.06	
Trans.	99.68	97.09	100		103.40		100	
6 mm, Ø	No fid.	Fid.		Fid.+thru	ı Recon	. F	Recon.+thru	
$\Delta \epsilon_n^{4D}$	+7.16%	-37.15%		-0.17%	-6.96%	ó	+0.75%	
$\Delta p [{\sf MeV/c}]$	-0.19	-0.18		-0.20	-0.12		-0.14	
Trans.	99.68	78.99		100	98.67		100	

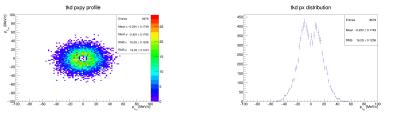
・ロト ・回ト ・ヨト

Emittance reduction in the $M2_D$ off configurations

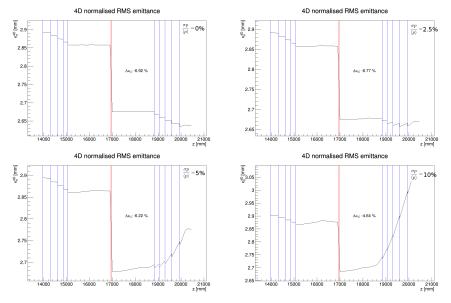

François Drielsma (UniGe)


Emittance and cooling

July 28, 2016 17 / 22

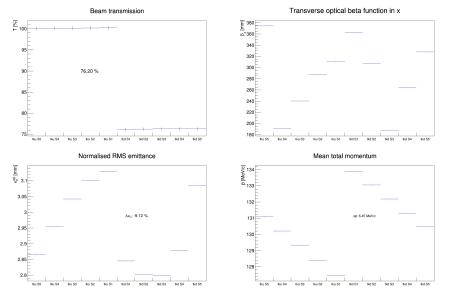

Main sources of bias on the emittance

1 Poor transmission: scraping gives a seemingly reduced emittance

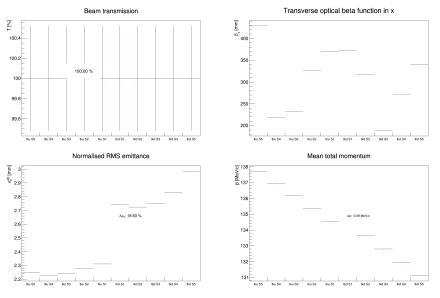


2 **Reconstruction inefficiencies**: The reconstruction produces a seemingly higher emittance due to the poor low p_T efficiency

François Drielsma (UniGe)


Effect of momentum spread on cooling, first look

-


Image: A match a ma

Run 8155, 140MeV/c beam, ECEs 140A, FC 50A

July 28, 2016 20 / 22

Run 8155, 140MeV/c beam, ECEs 140A, FC 50A (thru)

François Drielsma (UniGe)

Emittance and cooling

July 28, 2016 21 / 22

Conclusions and looking ahead

Observations made so far

- → Having M2 powered provides a higher transmission **3 mm**: 98.85% vs 97.09% **6 mm**: 86.57% vs 78.99%
- $\rightarrow\,$ Lower transmission means artificial cooling. Selecting the particles that made it through the whole channel gets rid of this bias.
- $\rightarrow\,$ With selection, we see the same cooling with or without M2
- → The reconstruction biases the emittance towards higher values: 3 mm: -6.88% vs -4.98% **6 mm**: -7.07% vs -5.65% To be investigated further:
 - $\rightarrow\,$ An increase in momentum spread seems to produce emittance growth downstream (caution, plots du jour...)
 - $\rightarrow\,$ Try to use the G4BL generated beam, more realistic
 - $\rightarrow\,$ Look into more momentum settings, flip mode
 - $\rightarrow\,$ Look further into data taken with the cooling channel up (du jour)