
Configuration Database

Janusz Martyniak, Imperial College
London

MICE CM45 Software and Computing

Configuration Database
project status

• Run Control (beamline) and Cooling Channel C
API status

• Absorber table and APIs

• Geometry corrections API – status

• Data and reco quality flags API – status

• CDB viewer

28/07/2016 J. Martyniak, MICE CM45

Configuration DB (contd.)
Beamline C API

• The API has been written in C (gSOAP) to facilitate
integration with run control code

• Successfully implemented for:
1. Retrieving beamline settings (tags)form the database
2. Storing beamline magnet data to the hardware
3. Storing the settings to the CDB for a given run
4. Storing new tags
• Project on Launchpad:

bzr+ssh://bazaar.launchpad.net/~janusz-
martyniak/mcdb/mice.cdb.client.api-C/

28/07/2016 J. Martyniak, MICE CM45

Beamline and Coolingchannel API –
experience so far

• Used for the current run period
• The current version of the setters allows for a client-side logging of

both request and response messages to/from the CDB (for debug
purposes)

• Run control writes run start information, followed by beamline
magnet data, coolingchannel magnet data and absorbers settings
(in this order)

• At run end a termination run record is written to the DB
• We should still decide how to handle exceptions thrown by any of

the steps above to decide if we should avoid orphaned
Coolingchannel data for example (probably not …).

• CDB only disallows writing run end record if no run start has been
written. Magnet data (both bl and cc could be written regardless)

28/07/2016 J. Martyniak, MICE CM45

Beamline/Coolingchanel API
error handling

Every operation which writes data to the CDB returns a
structure, which contains:
• Return code (int, 0 means OK)
• Return XML message for logging or display
• Request XML message for client-side logging
It is extremely important to verify that the ret code is 0,
failing to do so might leave us with incomplete run
information in the CDB.
The logs (client and server side) will allow to retrofit

missing information. We have done it more than once (!)
already…

28/07/2016 J. Martyniak, MICE CM45

Cooling Channel CDB API
an important design change

• Original Coolingchannel database table was timestamp
based. It was linked to a run number it was valid for by a
rather complicated time comparison, leaving to wrong
results if the CC was written after the beamline.

• It was not easy to fix for a case of (possible) missing run
end info or orphaned CC records, to name just those 2
cases.

• We have decided to drop this inconvenient design and link
coolingchannel data to run number directly (obvious, no ?).

• This required passing a run number from the Run Control
CC module with the CC call.

• The server side has been changed to use a new table and
fall back to the old one for older runs (run number < 7929)

28/07/2016 J. Martyniak, MICE CM45

Coolingchannel Absorber API

• Absorber related server side operations added
to the existing Coolingchannel WebService

• C API extended to allow storing/retrieving
absorber tags and writing absober data to the
CDB

• Python API written to read/write absorber
tags and data to the CDB

• Implemented in the Control Room (less tag
writing)

28/07/2016 J. Martyniak, MICE CM45

Absorber data record

• We are writing/reading:
1. absorber name

2. material

3. shape

4. temperature

5. pressure

6. comment

The table is indexed by run number.

28/07/2016 J. Martyniak, MICE CM45

Geometry Corrections
(issue #1817)

• For a given geometry ID we are storing following data for a geometry
module:

module name (string)
dx(float)
dx_err (float)
dy (float)
dy_err (float)
dz (float)
dz_err (float)
dx_rot (float)
dx_rot_err (float)
dy_rot (float)
dy_rot_err (float)
dz_rot (float)
dz_rot_err (float),
Comment (string)

28/07/2016 J. Martyniak, MICE CM45

Geometry Corrections API (Python)

Corrections may be stored in the DB by using one of the Python functions:
• set_corrections(modules, geometry_id, comment=‘’)
Where modules is a list of dictionaries:

modules=[{'name':'TOF0','dx':12.1,'dx_err':0.01, 'dy':22.20,'dy_err':0.02, 'dz':32.30,
'dz_err':0.029,.....}, {......}]

or
• set_corrections_xml(corr_xml)
Where corr_xml is:
"<GeometryID value='12'>

<ModuleName name='TOF0' dx='12.1' dxerr='0.01' dy='22.2' dyerr='0.02’ … />
<ModuleName name='TRACKER0' dx='12.4' dxerr='0.001' dyerr='0.002’ … />

</GeometryID>”

There are 2 methods to retrieve the corrections, by run or by geometry id:
• get_corrections_for_run_xml(self, run):
• get_corrections_for_geometry_id_xml(self, gid)

Both return an XML document. Thedocument format is identical to one listed
above.

28/07/2016 J. Martyniak, MICE CM45

Data Quality and Reco Flags
(in progress)

Store and retrieve bit coded data quality and detector
flags. Implemented for reco only.
• get_reconstruction_flags(run_number, maus_version,

batch_iteration_number)

Return Python dict keyed by detector name. For bits for
detector.
• get_reconstruction_flags_for_detector(detector, run_number,

maus_version, batch_iteration_number)

Return a flag (4 bits) for a given det. It uses the call
above.
• set_reconstruction_flags(run_number, maus_version,

batch_iteration_number, flags)

Set flags for all detectors.

28/07/2016 J. Martyniak, MICE CM45

CDB Viewer!

• A WEB service installed on the same machine
(Tomcat) as the public CDB Web Service

• Uses GWT (Google Window Toolkit) to present
data in a Web browser

• Pure java, compiles client stuff to javascript…
• The server side of the viewer uses CDB java client

calls (getBeamlineForRun() for instance) to
contact the CDB service:

Browser->CDBviewerWS->CDBclient->CDBWS->DB
• Originally written by Antony Wilson and forgotten

ever since ;-)

28/07/2016 J. Martyniak, MICE CM45

CDB Viewer

• Added Coolingchannel data and some Beamline
improvements (http://cdb.mice.rl.ac.uk/cdbviewer/):

28/07/2016 J. Martyniak, MICE CM45

http://cdb.mice.rl.ac.uk/cdbviewer/

CDB - Summary

• CDB is fully operational, bugs discovered have been
fixed, missing Coolingchannel data retrofitted.

• CAPI for Beamline implemented in the Control Room
• Cooling Channel API implemented in the Control Room
• Coolingchannel absorber API implemented in the

Control Room (apart from storing tags – done from
Python for a time being)

• State machine C-API written (user interface only, no
supermouse) – not used so far

• Geometry corrections. Ready for testing.
• CDB Viewer V.2 installed (CC data display added)

28/07/2016 J. Martyniak, MICE CM45

