

#### CATIA Design Requirements applied to Computer Aided Manufacturing at CERN

Pierre Naisson EN/MME/MA Christophe Bault EP/DT/EO



# Machining ?

From raw material to real part







# Outlines

- CNC workshop
- CAD/CAM
- Examples
- Outlook



## **Outlines**

- <u>CNC workshop</u>
- CAD/CAM
- Examples
- Outlook



# Figures – EN/MME

- 8 CNC milling machines
  - +6 lathes
  - +9 non standard machines (no CAM)
- 3 computers for programming
  - Feature CAM
- 1500 jobs/year,
- ~250 programs created/year





# Figures – other workshops

- EP/DT
  - 3 CNC milling machines + 1 CNC lathe
  - Feature CAM + CATIA CAM
- BE/BI
  - CNC machines
  - ESPRIT CAM
- TE/MSC
  - 3 CNC milling machines + 1 lathe
  - Go2CAM CAM
- EN/STI
  - Investigation









### Standard Workflow

3D model based procedure





## Outlines

- CNC workshop
- CAD/CAM
- Examples
- Outlook



## What is CAD/CAM ?

- CAM = computer-assisted manufacturing
- Old but very dynamic field of R&D





## What is CAM ?

- Surface-based tool trajectory computation
  - Mathematics: tool axis positioning regarding the local normal vector of the surface
    - Influence of CAD, u/v's, format, precision,...





Extracted from http://hu.topsolid.com/download/videos/topsolid-demo-library/complex-machining/stock-management.htm



### Powerful but tricky

- The same part could be machined with various strategies
  - Example: pocket











| solution                  | tps (s) | volume (cm3) | débit (cm3/min) | Qoutil | vc (m/min) | fz (mm/dt) | P (W) | Fc (N) | C (m.N) |         |
|---------------------------|---------|--------------|-----------------|--------|------------|------------|-------|--------|---------|---------|
| surfacer dresser          | 165     | 320          | 116.4           | 127.3  | 250        | 0.25       | 4455  | 1069   | 27      | Safest  |
| fraise à surfacer         | 103     | 320          | 186.4           | 195.9  | 250        | 0.4        | 6856  | 1645   | 41      | Easiest |
| fraise à grande avance    | 51      | 320          | 376.5           | 399.9  | 250        | 1.1        | 13996 | 3359   | 76      | Fastest |
| plaquette ronde $\phi$ 12 | 134     | 320          | 143.3           | 151.5  | 250        | 0.35       | 5303  | 1273   | 32      | Hardest |



### Powerful but tricky

- The same part could be machined with various strategies
  - Example: toolpath
    - Continuity/vibration







### Powerful but tricky

- The same part could be machined with various strategies
  - Example: Parameters
    - Surface finish





## Numerical workflow

- Error sources
  - CAM is one of many possible flaws





## Outlines

- CNC workshop
- CAD/CAM
- Examples
- Outlook



## 3D model quality

- The contract is on 2D drafting...
  - Consistency of 2D ←→ 3D
    - Need for synchronization / conform 3D model

NOTA 1 : NOMINAL DIMENSIONS ACCORDING TO 3D MODEL (SEE ST0652606\_02)



#### LHCACFHC0003



### 3D model quality

The GSD issue







#### HFMF2HTS0002



# 3D model quality

- The GSD issue
  - Low accessibility zone
    - Cost + poor quality



#### HFMF2HTS0002



### GPS side effects

- Manufacturing scheme
  - Chocks, scratches





#### PSBBWSRA0041



#### GPS side effects

- Decentered tolerances
  - Programmed as centered value IRL



#### LHCACFHC0027



# Design to manufacturing

- Hole, thread and counterboring
  - Automatic recognition though colored feature
    - Ex: blue = threads, red = counterbore,...?





## Design to manufacturing

- Shape adaptation to improve machinability
  - Accuracy + precision



EP-DT: Carbon fibre stave



## Design to manufacturing

- Shape adaptation to improve quality
  - Unmolding, surface finish



#### EP-DT: Carbon fibre stave



## Outlines

- CNC workshop
- CAD/CAM
- Examples
- Outlook



## **EN/MME CAM solution**

- CAM evaluation
  - Efficiency in milling (5 axis)
  - Easy to use (aside milling machine)
  - Turning  $\rightarrow$  TBD (future investments)





http://www.verosoftware.com/news/articles/Vero-Number-1-CAM-Business



# Think manufacturing !

- Don't hesitate to ask workshops
  - Reduce cost, time
  - Increase efficiency
- Valid 3D model
  - Smarteam ?
  - Strict control of consistency 2D/3D
- CAD @ CERN
  - EP/DT using CATIA CAM → 2020 ?
  - Compatibility tests to be carried out





www.cern.ch