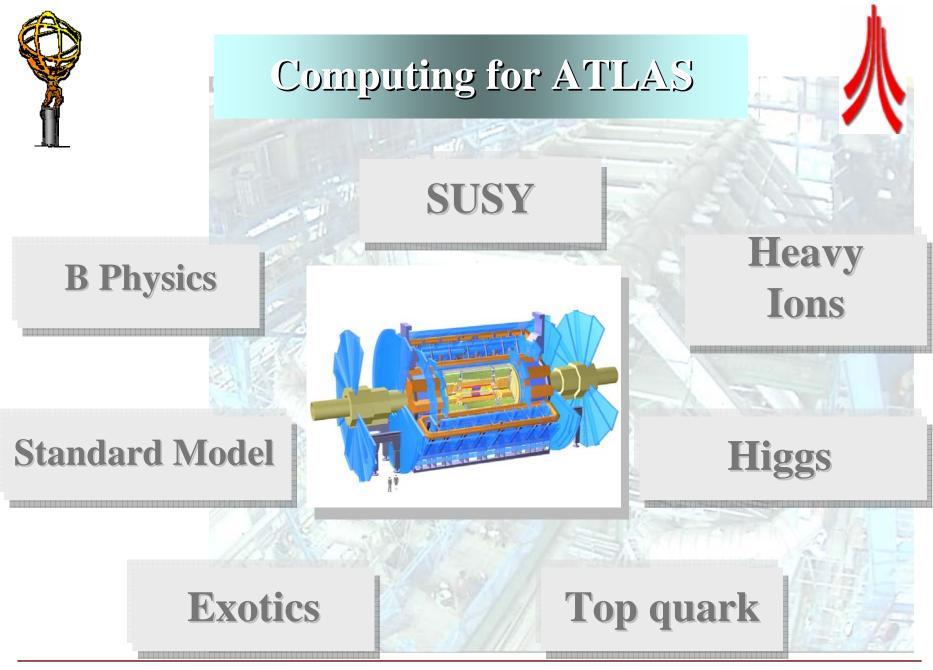
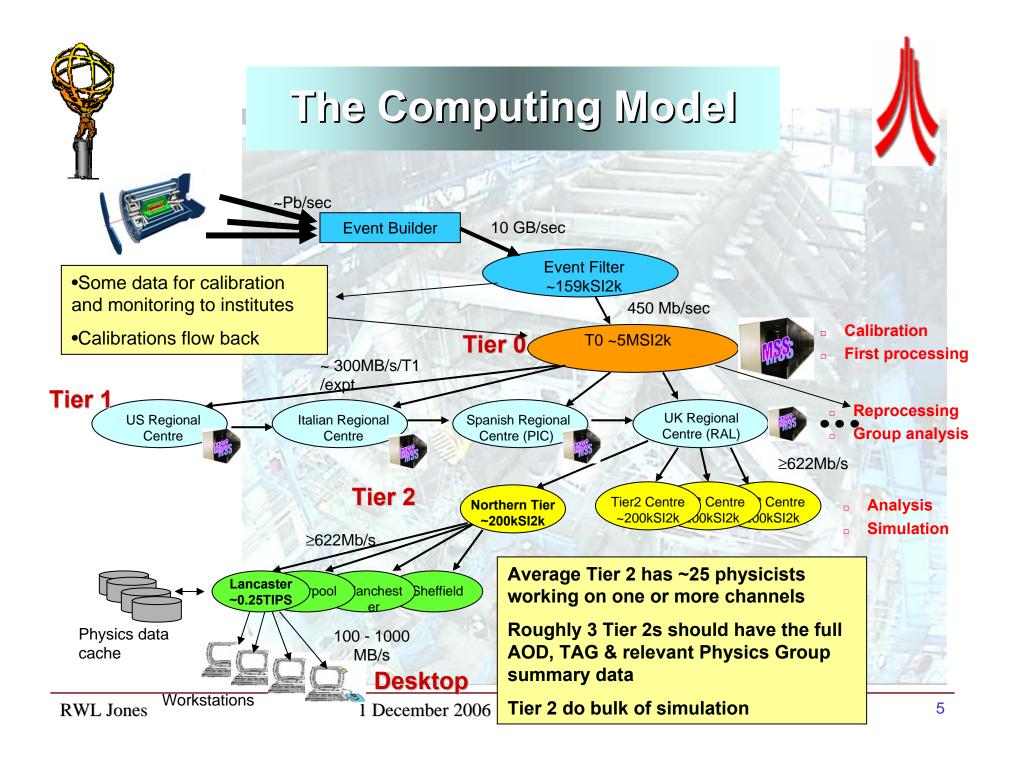

The ATLAS Computing Model



Roger Jones Lancaster University Grid Workshop Mumbai, India, 1/12/06

Overview • Brief summary ATLAS Facilities and their roles


- Analysis modes and operations (most relevant to Tier 2s)
- Data selection
- Distributed Analysis Tools

Computing Resources

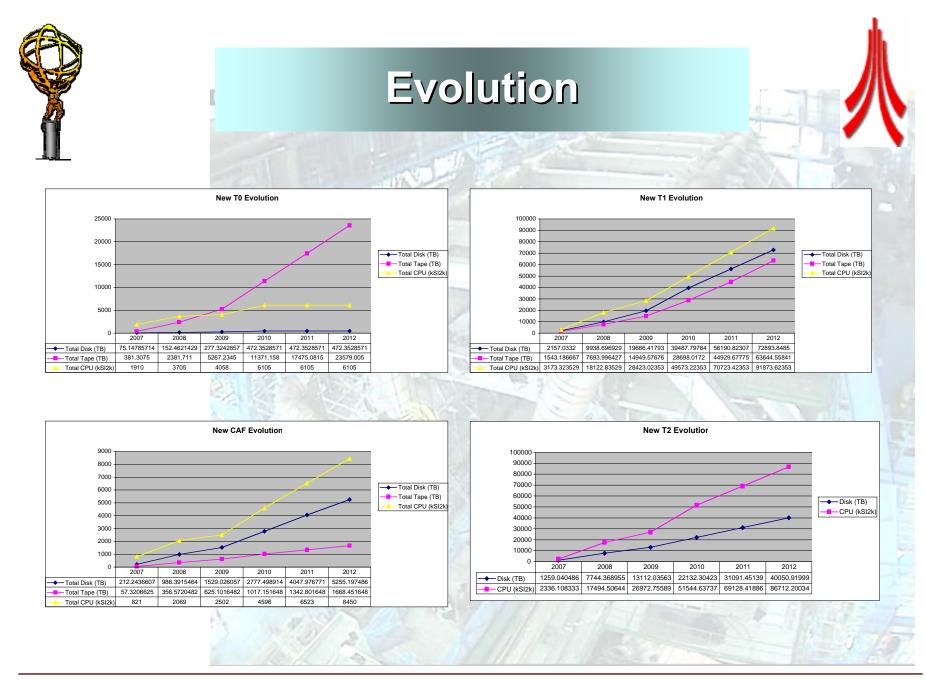
- Computing Model is well evolved, documented in C-TDR, but still evolves
 - Externally reviewed
 - <u>http://doc.cern.ch//archive/electronic/cern/preprints/lhcc/public/lhcc-2005-022.pdf</u>
- There are (and will remain for some time) many unknowns
 - Calibration and alignment strategy is still evolving
 - Physics data access patterns just starting to be tested
 - Unlikely to know the real patterns until 2007/2008!
 - Still uncertainties on the event sizes , reconstruction time
 - Data access is being optimised
- Lesson from the previous round of experiments at CERN (LEP, 1989-2000)
 - Reviews in 1988 underestimated the computing requirements by an order of magnitude!

Tier-0:

Facilities at CERN

- Prompt first pass processing on express/calibration & physics streams with old calibrations - calibration, monitoring
- Calibration tasks on prompt data
- 24-48 hours later, process full physics data streams with reasonable calibrations
 - \rightarrow Implies large data movement from T0 \rightarrow T1s
- CERN Analysis Facility
 - Access to ESD and RAW/calibration data on demand
 - Essential for early calibration
 - Detector optimisation/algorithmic development

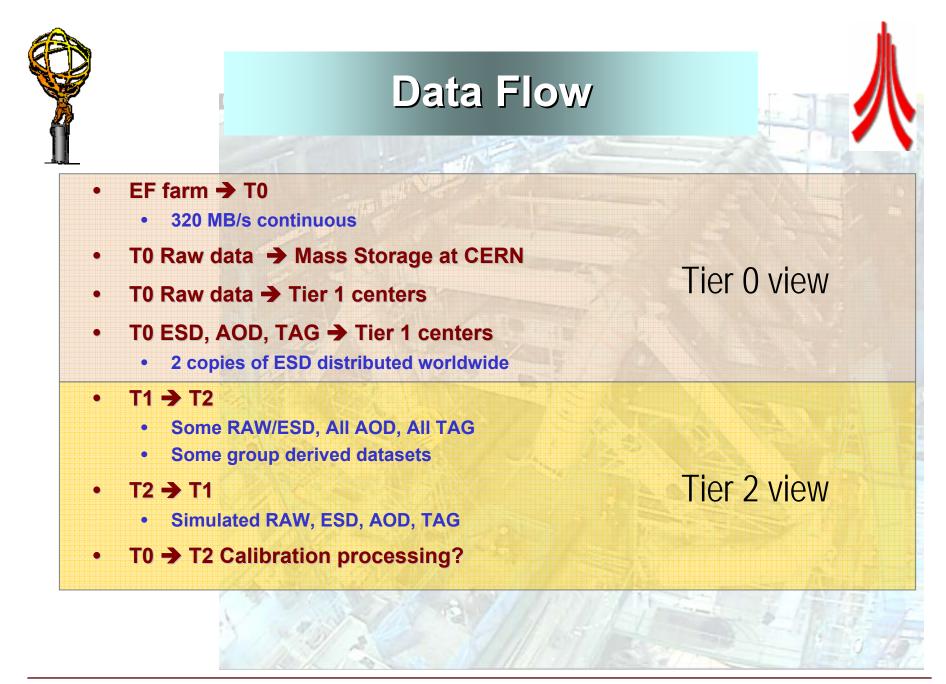
Facilities Away from CERN

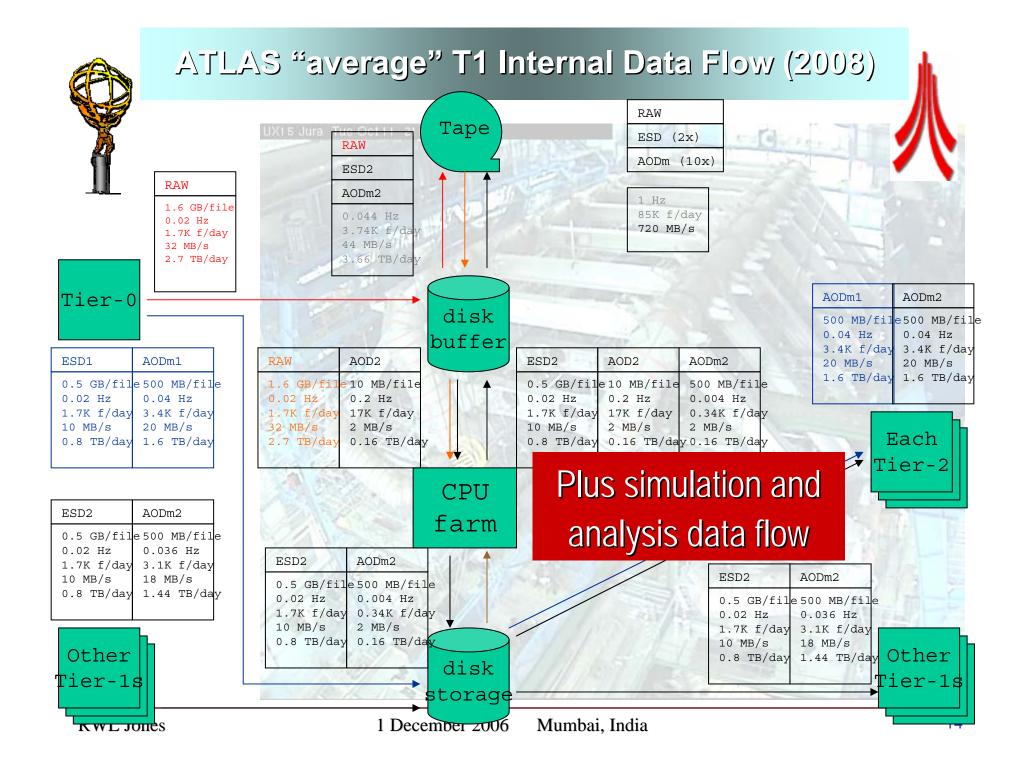

- Reprocess 1-2 months after arrival with better calibrations
- Reprocess all resident RAW at year end with improved calibration and software
 - \rightarrow Implies large data movement from T1+T1 and T1 \rightarrow T2
- → Also Group Analysis see later
- ~30 Tier 2 Centers distributed worldwide Monte Carlo Simulation, producing ESD, AOD, ESD, AOD → Tier 1 centers
 - On demand user physics analysis of shared datasets
 - Limited access to ESD and RAW data sets
 - Simulation
 - → Implies ESD, AOD, ESD, AOD → Tier 1 centers
- Tier 3 Centers distributed worldwide
 - Physics analysis

		Straw Man Profile				
year	energy	luminosity	physics beam time			
²⁰⁰⁷ •This c	hanges requ	uirements fr	om those in Technical Design Report			
₂₀₀₈ •We al	so have a be	etter idea o	• •protons - starting beginning July 4*10 ⁶ seconds			
•P	rocessing re	quirements	ions - end of run - 5 days at 50% overall efficiency			
	vent sizes fc		0.2*10 ⁶ seconds			
2009 •C	7+7 TeV alibration red	quirements	protons:50% better than 2008 → 6*10 ⁶ seconds ions: 20 days of beam at 50% efficiency			
•We a	e learning fr	om the Cor	nputing System Commissioning			
2010		1 1021				
2010	7+7 TeV	1x10 ³⁴	TDR targets: protons: $\rightarrow 10^7$ seconds			
	1		ions: \rightarrow 2*10 ⁶ seconds			

ATLAS Requirements start 2008, 2010

	CPU (MSi2k)		Disk (PB)		Tape (PB)	
	2008	2010	2008	2010	2008	2010
Tier-0	3.7	6.1	0.15	0.5	2.4	11.4
CERN Analysis Facility	2.1	4.6	1.0	2.8	0.4	1.0
Sum of Tier-1s	18.1	50	10	40	7.7	28.7
Sum of Tier-2s	17.5	51.5	7.7	22.1		P/L
Total	41.4	112.2	18.9	65.4	10.5	41.1

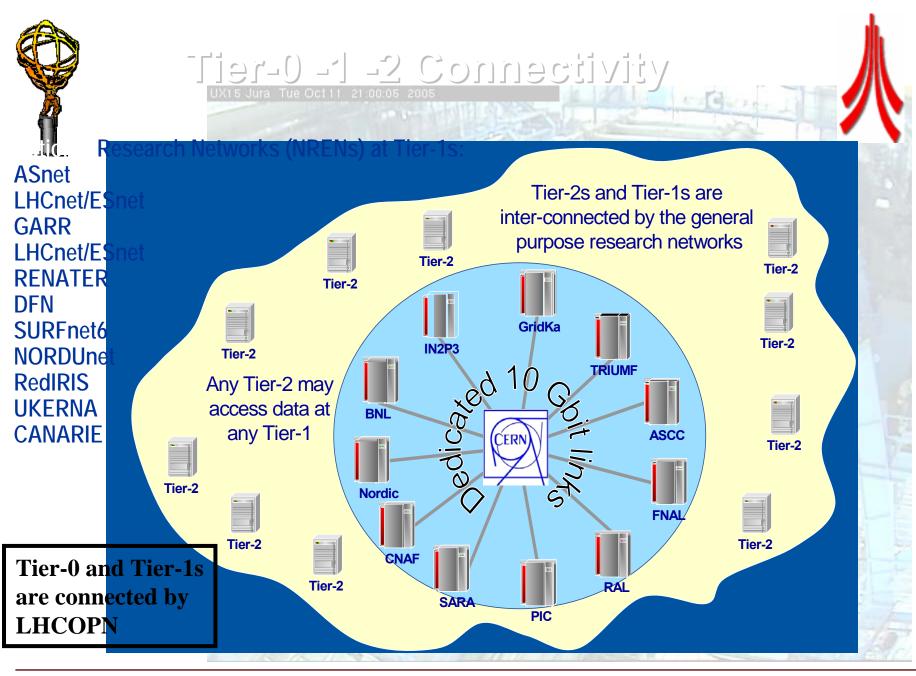

T1/T2 Group


- This has been trying to describe:
 - Network traffic to T1s and T2s at each specific site
 - Required T2 storage at associated T1s
- > Note: this is also evolving
 - The new schedule is included
 - > We also know that some pledges will change
 - The sharing of the Tier 1 load is still under discussion (but the one in the current megatable will change)

Observations

- The wide range of T1 sizes introduces some inefficiencies compared with the ideal case
 - Some T1s will have a large load because of their chosen T2s
 - Some are underused and we continue to negotiate better balance
- The T2s tend to have too high a cpu/disk ratio
 - Optimal use of the T2 resources delivers lots of simulation with network and T1 disk consequences (although the higher cpu/event will reduce this)
 - The T2 disk only allows about ~60% of the required analysis
 - Other models would seriously increase network traffic
- BNL full ESD copy has network implications elsewhere

WLCG: Tier-1s


UX15 Jura Tue Oct11 21:00:05 2005

Experiments served with

Tier-1 Centre		priority		LHC
	ALICE	ATLAS	CMS	
TRIUMF, Canada		Х		b
GridKA, Germany	Х	Х	Х	Х
CC, IN2P3, France	Х	Х	Х	Х
CNAF, Italy	Х	Х	Х	Х
SARA/NIKHEF, NL	Х	Х		Х
Nordic Data Grid Facility (NDGF)	Х	Х	Х	
ASCC, Taipei		Х	Х	
RAL, UK	Х	Х	Х	Х
BNL, US		Х		
FNAL, US			Х	
PIC, Spain		Х	Х	Х

5- 9- 7.9-1

Data Location

- The model assumes that most data is placed
- Jobs go to the data, not data to the jobs
 - Tier 2 capacity is collective, although some regional specialisation for calibration, some physics groups
- On average, 3 nearby Tier 2s hold the full AOD
 - There should be very little long-distance T2-T2 traffic
- Over half of the RAW and ESD in the Tier 2s (and on disk at the Tier 1) should be pre-decided
 - The rest should be requested via production manager of physics/detector group
 - Tape access will be carefully controlled and optimised
 - Data from disk in a few hours, data from tape in ~ 1 week

Analysis model broken into two components

- Scheduled central production of augmented AOD, tuples & TAG collections from ESD
- \rightarrow Derived files moved to other T1s and to T2s
- Chaotic user analysis of augmented AOD streams, tuples, new selections etc and individual user simulation and CPU-bound tasks matching the official MC production
- → Modest job traffic between T2s

Group Analysis

- Group analysis will produce
 - Deep copies of subsets
 - Dataset definitions
 - TAG selections
- Characterised by access to full ESD and perhaps RAW
 - This is resource intensive
 - Must be a scheduled activity
 - Can back-navigate from AOD to ESD at same site
 - Can harvest small samples of ESD (and some RAW) to be sent to Tier 2s
 - Must be agreed by physics and detector groups
- Big Trains
 - Most efficient access if analyses are blocked into a 'big train'
 - Idea around for a while, already used in e.g. heavy ions
 - Each wagon (group) has a wagon master)production manager
 - Must ensure will not derail the train
 - Train must run often enough (every ~2 weeks?)

On-demand Analysis

UX15 Jura Tue Oct 11 21:00:05 20

- Restricted Tier 2s and CAF
 - Can specialise some Tier 2s for some groups
 - ALL Tier 2s are for ATLAS-wide usage
- Most ATLAS Tier 2 data should be 'placed' and have a lifetime of order months
 - Job must go to the data
 - This means the Tier 2 bandwidth is lower than if you pull data to the job
- Role and group based quotas are essential
 - Quotas to be determined per group not per user
- Data Selection
 - Over small samples with Tier-2 file-based TAG and AMI dataset selector
 - TAG queries over larger samples by batch job to database TAG at Tier-1s/large Tier 2s
- What data?
 - Group-derived EventViews/SAN/pAOD
 - Root Trees
 - Subsets of ESD and RAW
 - Pre-selected or selected via a Big Train run by working group

Optimised Access

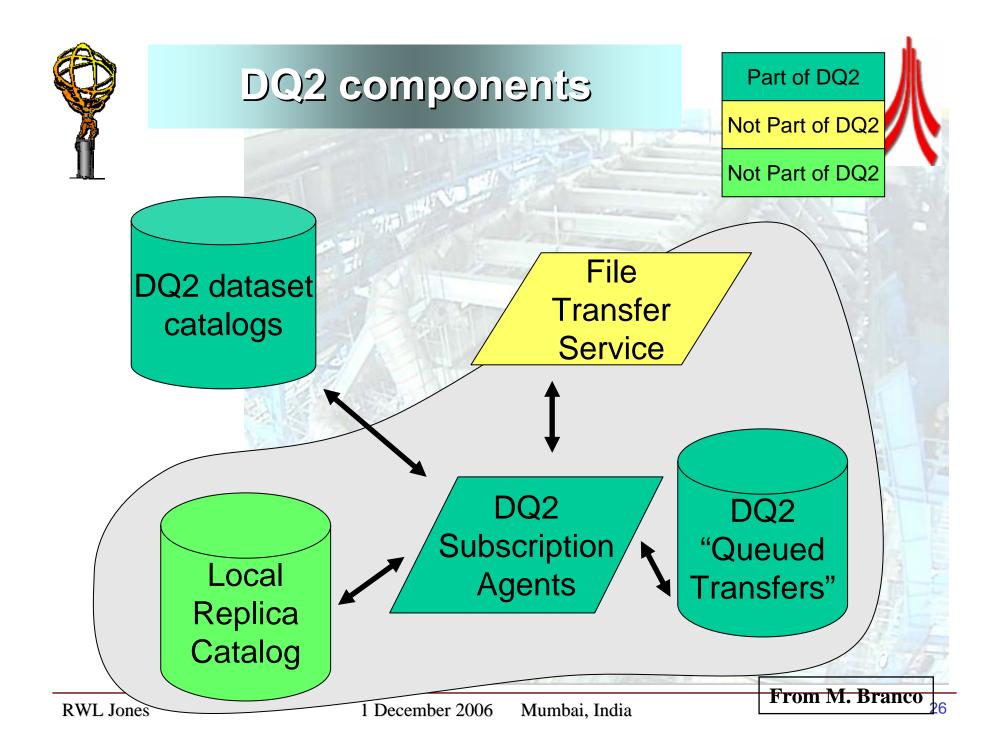
- RAW, ESD and AOD will be streamed to optimise access
- The selection and direct access to individual events is via a TAG database
 - TAG is a keyed list of variables/event
 - Overhead of file opens is acceptable in many scenarios
 - Works very well with pre-streamed data
- Two roles
 - Direct access to event in file via pointer
 - Data collection definition function
- Two formats, file and database
 - Now believe large queries require full database
 - Multi-TB relational database
 - Restricts it to Tier1s and large Tier2s/CAF
 - File-based TAG allows direct access to events in files (pointers)
 - Ordinary Tier2s hold file-based primary TAG corresponding to locallyheld datasets

Streaming

- All discussions are about optimisation of data access
- TDR had 4 streams from event filter
 - primary physics, calibration, express, problem events
 - Calibration stream has split at least once since!
- At AOD, envisage ~10 streams
- We are now planning ESD and RAW streaming
 - Straw man streaming schemes (trigger based) being agreed
 - Will explore the access improvements in large-scale exercises
 - Are also looking at overlaps, bookkeeping etc

ATLAS Data Management

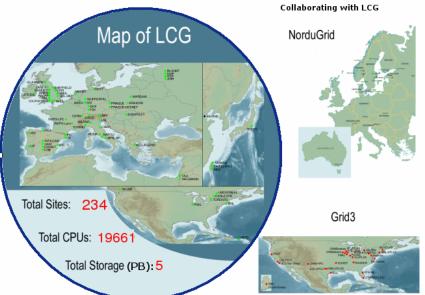
- Based on Datasets = defined set of files (see David's talk about our Data Management)
- PoolFileCatalog API is used to hide grid differences
 - On LCG, LFC acts as local replica catalog
 - Aims to provide uniform access to data on all grids
- Catalogues and ATLAS-specific services are restricted to associated Tier 1s
- FTS is used to transfer data between the sites
 - Tier 2 must define endpoints and also install end-user tools
- Evidently Data management is a central aspect of Distributed Analysis
 - PANDA is closely integrated with DDM and operational
 - LCG instance was closely coupled with SC3
 - Right now we run a smaller instance for test purposes
 - Final production version will be based on new middleware for SC4 (FPS)


Dataset Access

- Collections of selected files comprise a dataset
 - Dataset will have a well defined associated luminosity (integer number of luminosity blocks)
- At present the primary source of dataset information is the simulation data from the production system
 - Production database suffices for now
- Soon (!) this will be from real data
 - Datasets will also be defined by physics groups, detector groups
 - Associated data will be modified for detector status, calibration info etc
 - \rightarrow Requires a separate repository for dataset information and selection
- ATLAS Metadata Interface being developed for this
 - Keeps the production database secure
- Interaction between dataset and TAG selection being worked out

DQ2: ATLAS Distributed Management system

- DQ2, is built on top of Grid data transfer tools, is based on:
 - Hierarchical definition of files and datasets
 - Through dataset catalogs
 - Datasets as the unit of file storage and replication
 - Supporting dataset versions
 - Distributed file catalogues at each site
 - Automatic data transfer mechanisms using distributed site services
 - Dataset subscription system
- DQ2 allows the implementation of the basic ATLAS Computing Model needs:
 - Distribution of raw and reconstructed data from CERN to the Tier-1s
 - Distribution of AODs (Analysis Object Data) to Tier-2 centres for analysis
 - Storage of simulated data (produced by Tier-2s) at Tier-1 centres for further distribution and/or processing



ATLAS Grid Infrastructure

•Three grids

- LCG
- OSG
- Nordugrid

•Significant resources, but different middleware

 Teams working on solutions are typically associated to a grid and its middleware

•In principle ATLAS resources are available to all ATLAS users

But must also work locally

Transformations

- Common transformations is a fundamental aspect of the ATLAS strategy
- Overall no homogeneous system but a common transformation system allows to run the same job on all supported systems
 - All systems should support them
 - In the end the user can adapt easily to a new submission system, if he does not need to adapt his jobs
- Separation of functionality in grid dependant wrappers and grid independent execution scripts.
- A set of parameters is used to configure the specific job options
- A new implementation in terms of python is under way

Distributed Analysis Tools

- Distributed Analysis
 - Data Management
 - Only now rolling-out in LCG, deployed in OSG
 - Site configuration
 - In LCG defining short/long/medium queues
 - OSG has PANDA task queue
 - Submission tools
 - In LCG use RB or Condor-G submission
 - In OSG, PANDA project provides scheduling
 - (Too?) Many possibilities here!

• The full system design uses the GANGA framework and interface

- In the interim, partial solutions allow some aspects on some Grids
 - LJSF on LCG (now out of use)
 - ARC in NorduGrid
 - Clone of ATLAS Production system as a back-end?
 - Good for some applications, but restrictive
 - pAthena on OSG (proof of principle on LCG also)
- GANGA provides CLI, GUI and Python scripting interface

RWL Jones

Gaudi/Athena and Grid Alliance

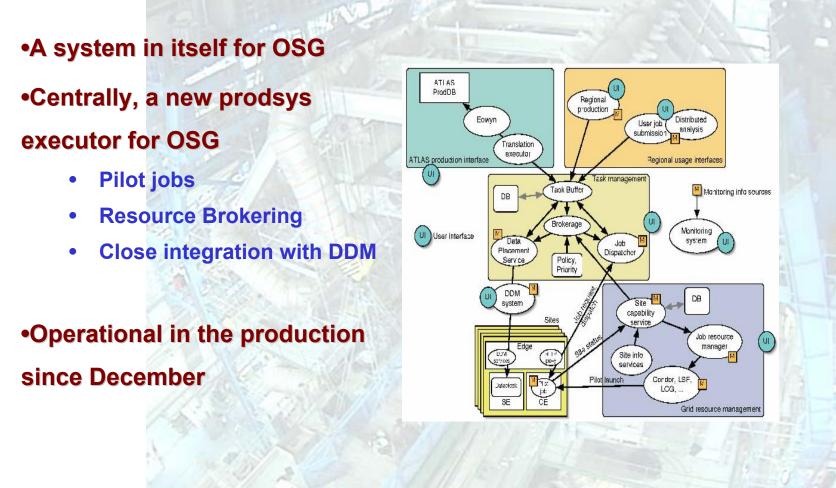
ATLAS Back-End Strategy

- Production system
 - Seamless access to all ATLAS grid resources
 - Not a long term solution to distributed analysis, but useful test bed and components
- Direct submission to GRID
 - LCG
 - LCG/gLite Resource Broker
 - CondorG
 - OSG
 - PANDA
 - Nordugrid
 - ARC Middleware

Production System

- Provides a layer on top of the middleware
 - Increases the robustness by the system
 - Retrials and fallback mechanism both for workload and data management
 - Our grid experience is captured in the executors
 - Jobs can be run in all systems
- Redesign based on the experiences of last year
 - New Supervisor Eowyn
 - New Executors
 - Connects to new Data Management
- Supports multiple submission mechanisms

- Resource Broker
 - Scalability
 - Reliability
 - Throughput
- Condor-G job submission
 - Conceptually similar to LCG RB, but different architecture
 - Scaling by increasing the number of schedulers
 - No logging & bookkeeping, but a scheduler keeps track of the job


New gLite Resource Broker

- Bulk submission
- Many other enhancements
- Studied in ATLAS LCG/EGEE Taskforce

LCG

PANDA

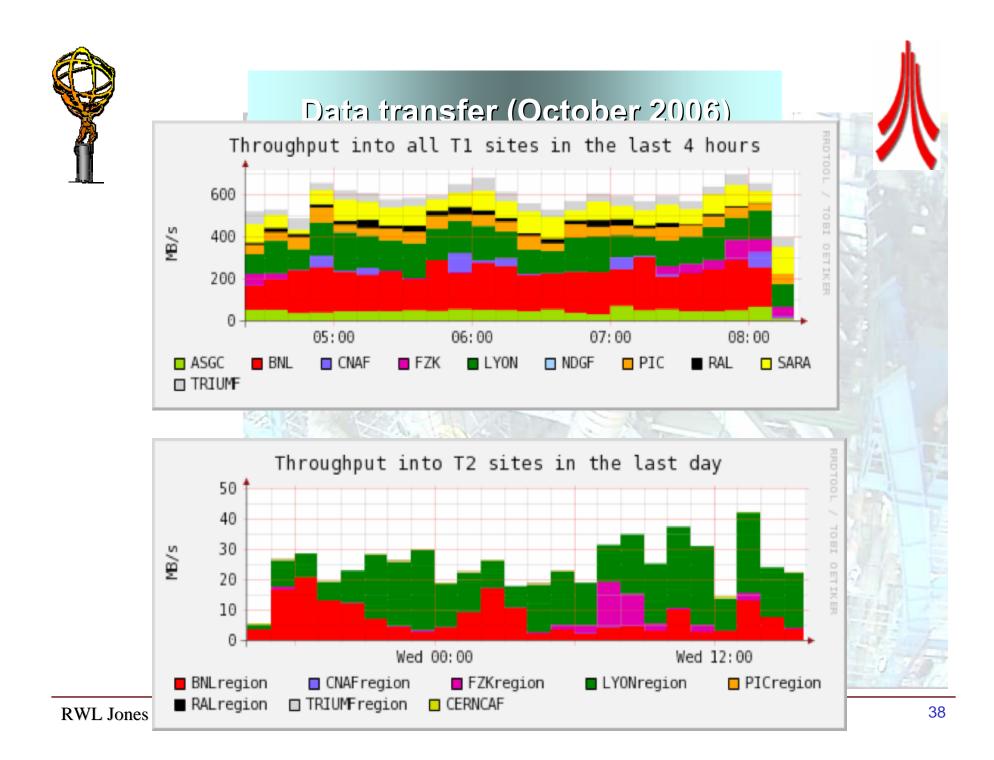
- Direct submission
 - Regional production
 - Analysis jobs

Key features for analysis

- Analysis Transformations
- Job-chaining
- Easy job-submission
- Monitoring
- DDM end-user tool
- Transformation repository

ARC Middleware

- Standalone ARC client software 13 MB Installation
- CE has extended functionality
 - Input files can be staged and are cached
 - Output files can be staged
 - Controlled by XRSL, an extended version of globus RSL
- Brokering is part of the submission in the client software
 - Job delivery rates of 30 to 50 per min have been reported
 - Logging & bookkeeping on the site
- Currently about 5000 CPUs, 800 available for ATLAS



Tier-0 Scaling test (October 2006)

- Put in place monitoring system allowing sites to see their rates (disk/tape areas), data assignments, errors in the last hours, per file, dataset, ...
- FTS channels in place between T0 and T1 and now progressing between T1 and T2s
 - By 'pressure' of regional contacts
- Start of the exercise marked by deployment of new DQ2 version (LCG and OSG sites)
 - Hopefully this is last major new release for near future
 - Many improvements to the handling of FTS requests
- Tier-2s participate on a "voluntary basis".

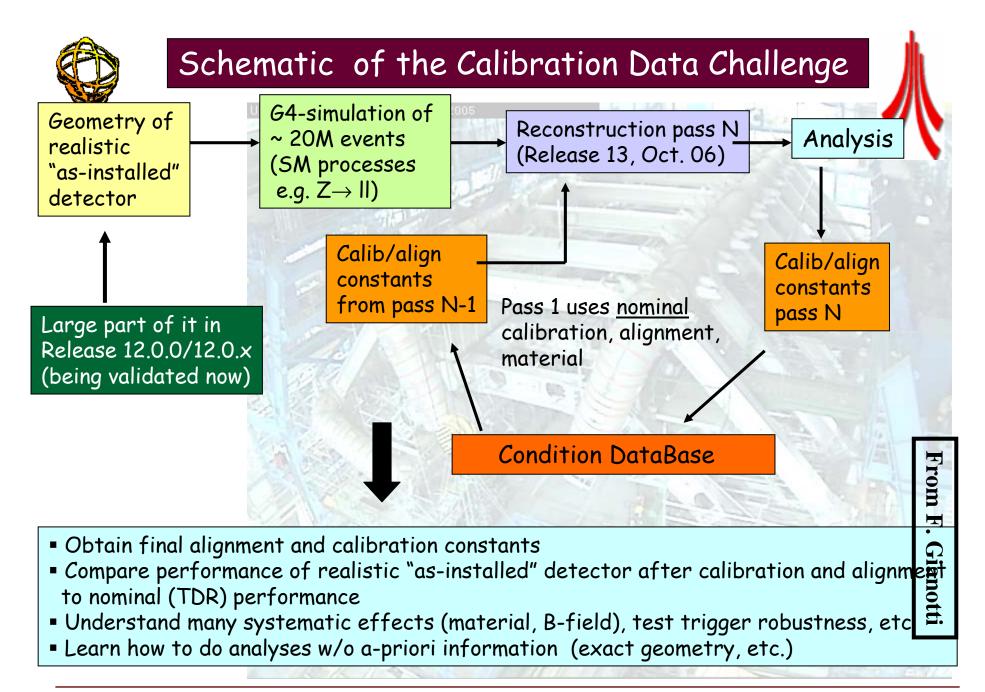
Computing System Commissioning (2006)

The high-level goals of the Computing System Commissioning

operation during 2006

- A running-in of continuous operation not a stand-alone challenge
- Main aim of CSC is to test the software and computing infrastructure that we will need at the beginning of 2007:
 - Calibration and alignment procedures and conditions DB
 - Full trigger chain
 - Event reconstruction and data distribution
 - Distributed access to the data for analysis
- 60 M events have already been produced; new production of 10M events will be done from now until the end of the year.
- At the end of 2006 we will have a working and operational system, ready to take data with cosmic rays at increasing rates

Fully simulate ~ 20M events (mainly SM processes: Z \rightarrow II, QCD di-jets, etc.) with "realistic" detector


"Realistic" =

- 1) As installed in the pit : already-installed detector components positioned in the software according to survey measurements
- 2) Mis-calibrated (e.g. calo cells, R-t relations) and mis-aligned (e.g. SCT modules, muon chambers); include also chamber/module deformations, wire sagging, HV imperfections, etc.

Use the above samples and calibration/alignment algorithms to calibrate and align the detector and recover the nominal ("TDR") performance. Useful also to understand the trigger performance in more realistic conditions.

Includes exercise of (distributed) infrastructure: Condition DB, bookkeeping, etc.

Scheduled for Spring 2007; needs ATLAS Release 13 (February 2007)

"The Dress rehearsal"

A <u>complete exercise of the full chain</u> from trigger to (distributed) analysis, to be performed in 2007, a few months before data taking starts

- Generate $O(10^7)$ evts: few days of data taking, ~1 pb⁻¹ at L=10³¹ cm⁻² s⁻¹
- Filter events at MC generator level to get physics spectrum expected at HLT output
- Pass events through G4 simulation (realistic "as installed" detector geometry)
- Mix events from various physics channels to reproduce HLT physics output
- Run LVL1 simulation (flag mode)
- Produce byte streams \rightarrow emulate the raw data
- Send raw data to Point 1, pass through HLT nodes (flag mode) and SFO, write out events by streams, closing files at boundary of luminosity blocks.
- Send events from Point 1 to TierO
- Perform calibration & alignment at TierO (also outside ?)
- Run reconstruction at TierO (and maybe Tier1s?) \rightarrow produce ESD, AOD, TAGS
- Distribute ESD, AOD, TAGs to Tier1s and Tier2s
- Perform distributed analysis (possibly at Tier2s) using TAGs
- MCTruth propagated down to ESD only (no truth in AOD or TAGs)

Conclusions

- Computing Model Data well evolved for placing Raw, ESD and AOD at Tiered centers
 - Still need to understand all the implications of Physics Analysis
 - Distributed Analysis and Analysis Model
 Progressing well
- SC4/Computing System Commissioning in 2006 is vital.
- Some issues will only be resolved with real data in 2007-8