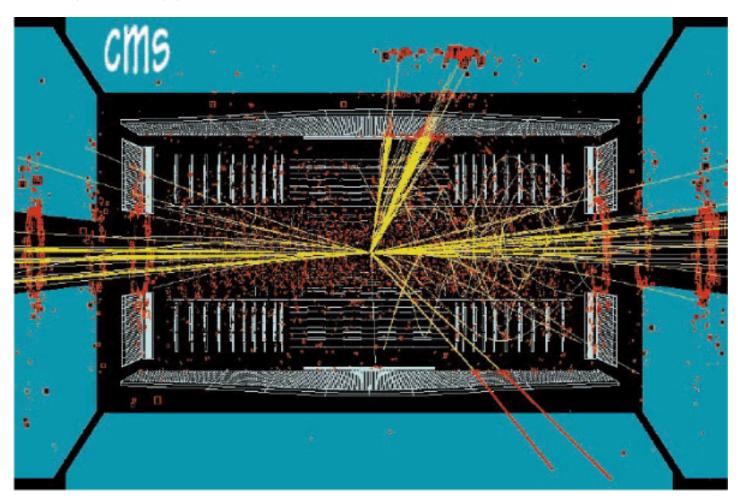


CMS Data Management and CMS Monitoring (emphasis on T2 perspective)


- CMS data organization
- Data names, numbers, flow
- Data handling issues at a site
- CMS Computing operation monitoring

Data building block: The Event

 Two protons collide at the center of CMS detector, and millions of electronic channels collect data

Yellow lines (tracks) e.g., added later on during data processing

The Event

- At the core of the experiment data is "The Event"
- A numerical representation of one proton-proton collision at LHC
 - > As seen through CMS detector
 - > Sort of a digital picture of the collision
- There are many events → Datasets
- There are many data in one event
 - > Data inside each event are described as objects
 - > Events data are written in root format (outside CERN at least)
- As data are processed, event content changes → Data Tiers
 - > Events with similar content (same objects) are said to belong to same data Tier (more in next slides)

Data processing steps

- MonteCarlo (MC) Production (Simulation)
 - > Create data that look like coming from detector
- DAQ/HLT
 - > Data AcQuisition and High Level Trigger = online event selection
 - > Writes data coming from detector (not all events are recorded)
- Processing and reprocessing (Reconstruction, Production)
 - > Add/change data
 - > Because of computations made on the data
 - Because of added information (calibration, conditions, geometry...) from DataBases
- Skim
 - > Select a fraction of the data
- Analysis
 - > All of that, but often: extract one plot, or one number
- Each processing step output is in a well defined format: data Tier
 - > GEN, HIT, DIGI, RECO, AOD

Data Tiers and Datasets

- Horizontal organization: Data Tiers track the story of one event through the CMS computing chain
- A Data Tier is a collection of events with same objects
 - Detail: each data Tier can be thought as comprising the full CMS data set in that particular representation (list of objects). Hence we talk about
 - The CMS RAW data
 - The CMS RECO data, etc.
- Vertical data organization: All data tiers for events of a particular kind, coming from a specific origin
 - > One specific Monte Carlo simulation set of input parameters
 - > One particular selection criteria in the CMS Trigger
 - One particular selection in the processing chain, followed by other processing and skim steps
- These are called: datasets

Examples (names you may sort of see)

	Simulation Z-to-ee	HLT 4-leptons	HLT Jet-1200	Simulation JetSim1200
MC Production at Tier2	GEN,HITS, DIGI			GEN,HITS, DIGI
Copy to Tier1	GEN,HITS, DIGI			GEN,HITS, DIGI
DAQ/HLT at CMS (P5)		RAW	RAW	
Prompt Reco at TierO		RECO, AOD	RECO, AOD	
Reprocessing at Tier1	RECO, AOD	OD RECO, AOD RECO, AOD		
Skim at Tier1	RECO, AOD	RECO, AOD RECO, AOD		
Copy to Tier2	RECO, AOD	RAW,RECO, AOD	RAW,RECO, AOD	RECO, AOD

CMS data management

- There are data (events) (KB~MB: size driven by physics)
 - > 1PB/year = 10^12 KB ~ 10^9 events
- Event data are in files (GB: size driven by DM convenience)
 - > 10^6 files/year CMS catalogs list files, not events, nor objects
- Files are grouped in Fileblocks (TB: size driven by DM convenience)
 - > 10^3 Fileblocks/year CMS data management moves Fileblocks i.e. tracks data location only at the Fileblock level
- Fileblocks are grouped in Datasets (TB: size driven by physics)
 - Datasets are large (100TB) or small (0.1TB)
 - Datasets are not too many: 10³ Datasets (after years of running)
- CMS catalog (DBS) lists all Datasets and their contents, relationships, provenance and associated metadata
- CMS Data Location Service (DLS) list location of all File Blocks
- DBS+DLS: central catalogs at CERN, no replica foreseen currently

Data access

- 1. Browse DBS to find a dataset name
 - > DBS also gives list of FileBlocks and FileNames
 - > FileNames are names in CMS name space called LogicalFileName
 - > LFN are unique, each uniquely identify one file (aside from copies)
- 2. Query DLS for FileBlock location
- 3. Submit jobs to the proper sites
 - > Each job will have a list of LFN to access
 - CMS application will resolve LFN to something that can be used in an "open statement"
- 2. and 3. are usually done by programming tools, users wanting to access data only specify Dataset name

In practice: files on servers

- A Tier2 will manage various kinds of data
 - > Appear as a set of file blocks from specific datasets
- MC production output
 - Intermediate small files at job output (unmerged)
 - > Merged files, O(GB) for transfer to Tier1
- Data for analysis users
 - > Skims from larger datasets at Tier1 (all kind of tiers)
 - > Data for/from local users from processing of those
- Some data will have backup (on tape) at Tier1/0
- Some not (MC output before transfer, user's data)
- A Tier2 may (or may not) want to use different resources (for space, performance, reliability) for different data
 - > How does a Tier2 know which file is of which kind?

Logical and Physical names

- Each CMS file in a particular data set/data tier is a well defined set of objects, a set of bytes
- This has a name that uniquely defines it
 - > But has many physical instances, since it can move around
- So have a Logical File Name: LFN
 - > Unique name for a file in the CMS data set
- And we have a Physical File Name; PFN
 - > The actual name of a file in a particular site in the format that can be used by an application to act on it
 - > One LFN may correspond to many PFN's
 - > dcap:/... rfio:/... srm:/.
 - > More on Sunday
- Basic concept
 - > LFN and PFN space is organized
 - So a site can assign data to resources based on PFN

File Name space organization

- CMS will organize File Name Space (i.e. directory structure in LFN *and* in PFN) so that storage management is easy
- For this to work a contract with the site is needed
 - > It is expected, that each site offers storage to CMS via a single Storage Element with a unique uniform name space
 - > CMS can cope with multiple Storage Elements as long as each offers the same uniform name space
- The Storage Element must have an SRM server
- The Storage Element must offer Posix-like access, i.e. some protocol to open the file from the analysis application
 - Dcap, rfio, rootd, xrootd....
 - > In addition to srm/gsiftp
- dCache, Castor, DPM are all OK

File Names organization

- CMS organize all its data in a unique, hierarchical, LFN space.
 - > All data live in subdirectories of this common name space.
 - > This name space organization is the one visible in DBS
- CMS guarantees that the number of files in each directory is limited
 - > Therefore CMS LFN name space can be trivially mapped to physical name space of any specific Storage Element
 - > See Trivial File Catalot tutorial on
- CMS will use the leftmost directory/ies of the name space to separate sets
 of data that may need to be handled differently at sites, as far as physical
 location (tape, disk, other). Examples
 - /store/unmerged/.... used for temporary outputs that need to be merged in larger files before moving/storing, well suited for disk-only storage
 - /store/production/... used for final production output, to be saved on tape at Tier1's
- Each site will then map those branches of the LFN tree to a specific SE (or piece of) according to desired policy and local technicalities

Data transfer

- Data is transferred file-by-file
- But CMS data transfer tool (PhEDEx) is optimized to deal with datasets
- Moving a dataset (or a portion of it) implies interaction with CMS data catalogs and may last days of weeks, hence the need to cope with failures and down times
- CMS's PhEDEx tool builds on top of single file transfer tools for this
- Site data managers will interact with PhEDEx requesting datasets to be copied locally, or declaring data created locally as being available for transfer to other sites.
 - Dataset name from DBS will be used
- PhEDEx will take care of interacting with DBS and DLS as needed

Data flows: output

- MC Simulation data are created at Tier2 and stay there only for a brief time. Final destination is one Tier1, selected because of its capacity to offer custodial storage for them
 - > not because of proximity/affiliation
 - > required bandwidth is small, no problem to reach any T1
- Data rate out of a Tier2 dependent on amount of generated data per unit of time (i.e. CPU), usually a few MB/sec (e.g. ~4 for US T2's)
 - > steady trickle of data out from the site
- Which data is produced will be under control of central CMS operations, site provides resources but does not control which job is sent to the site

Data flows: input

- What data to import is largely under site control
- See discussion about Tier2 role in previous talk
- How much to import is a combination of local users needs and disk capacity
- In general transfers will be initiated by a person responsible for data management at the site, whom asks PhEDEx to replicate locally a given (fraction of a) dataset, i.e. a list of Fileblocks
- New data are not required every day
- But when they are required for local analysis, tomorrow is not too soon
 - > Input traffic has peaks and comes in bursts
 - > Will try to saturate network for a while, then stop
 - > Few MB/sec average, but up to 100MB/sec peak
- Different data may have to come from different T1's

Data flows summary

- PhEDEx will manage most of the data flow
 - > Tutorial on Sunday
- PhEDEx relies on FTS and SRM
 - > Tutorial on Saturday
- Input bandwidth much higher then output
 - > Beware competition with data access from running jobs
 - May have site specific issues that requires site specific solution depending on actual hardware configuration
- CMS can tune operation to have as much transfers as possible to have the "best connected Tier1" at the other end, but this will not satisfy all needs
- A Tier2 will need to move data to/from many Tier1
- More details of flows (work in progress)
 - http://lcg.web.cern.ch/LCG/documents/Megatable161106.xls

Summary on Data Management

- Structured data
- Well defined name space for files
- Sites can map CMS data to various hardware, to comply with preferred policies for space allocation, robustness, performance
- Uniform name space must be offered locally
- No local file catalog needed
- CMS's own products (DBS, DLS, PhEDEx) focus on the TB scale (Fileblocks, datasets)
- Grid solutions underneath deal with singe files at GB scale
 - FTS, SRM, gsiFtp
- CMS tools and applications work with all standard SRM servers currently deployed
 - > dCache, Castor, DPM

Monitor

- Monitor the data locations
 - > Which data a site hosts
- Monitor the data transfers, data flows
 - > Which data should a site receive/send?
 - > Are data moving? How well?
- Monitor the running applications
 - Which jobs are running at a site?
 - How long they wait, run?
 - > Are they successful?
 - Which data do they access?
 - How much data do they read?

Monitor the data location

DBS/DLS DATA DISCOVERY PAGE

Description

Parents

Results

DBS data discovery page

http://cmsdbs.cern.ch/discovery

Release Specs

Home page: users experts

Integrated DBS/DLS view

Click on file block name to get file list

More Info on Sunday

Computer readable format as well

Necimates	I					
Navigator	Site search					
Keyword search	Use this form to show detailed information about particular site.					
Site	NOTE: the DLS queries may take a lot of time, since they go through LFC.					
	Choose DBS instance MCGlobal/Writer ▼					
DBS info	Please select a site: cmsrm-se01.roma1.infn.it ▼ Search					
Summary						
	1					
History						
Help						
Hide panel	Description					

Block name

Parameter Set

Validation

CSA06-081-os-minbias/CMSSW 0 8 1-GEN-SIM-DIGI-1154005302-merged#87

App configs

/CSA06-081-os-minbias/CMSSW_0_8_1-GEN-SIM-DIGI-1154005302-merged#911c3e56-dfa9-4f67-b0db-458a8dc₄

CSA06-083-os-EWKSoup/CMSSW_0_8_3-GEN-SIM-DIGI-HLT-1156877645-merged#26578d92-7624-4d5c-bcf9-at

/CSA06-083-os-Jets/CMSSW_0_8_3-GEN-SIM-DIGI-HLT-1156877643-merged#23cb9bb5-a464-434c-a51b-d1a7fe
Trieste CMS DM and Monitor 19

Stefano Belforte INFN Trieste

Monitor the data location

DBS data discovery page

http://cmsdbs.cern.ch/discovery

Integrated DBS/DLS

DBS data discovery page

DBS/DLS DATA DISCOVERY PAGE

Home page: users experts

DBS/DLS DATA DISCOVERY PAGE

Home page: users experts

http://cmsdbs.cem.ch/discovery/getLFNlist?dbsInst=MCGloba

Block name:

CSA06-083-os-EWKSoup/CMSSW_0_8_3-GEN-SIM-DIGI-HLT-1156877645-merged#26578d92-7624-4d5c-bcf9-af

status	type	events	size	name
	EVD	1747	1.8GB	/store/CSA06/2006/8/29/CSA06-083-os-EWKSoup/1E60C37B-463D-DB11-90
	EVD	1743	1.8GB	/store/CSA06/2006/8/29/CSA06-083-os-EWKSoup/5277518C-9C3E-DB11-87
	EVD	1749	1.8GB	/store/CSA06/2006/8/29/CSA06-083-os-EWKSoup/70E67E11-633D-DB11-BE
	EVD	1748	1.9GB	/store/CSA06/2006/8/29/CSA06-083-os-EWKSoup/76F17405-853E-DB11-9A
	EVD	1747	1.8GB	/store/CSA06/2006/8/29/CSA06-083-os-EWKSoup/96232A38-513D-DB11-9B
	EVD	1747	1.8GB	/store/CSA06/2006/8/29/CSA06-083-os-EWKSoup/9C204982-493D-DB11-AE
	EVD	1748	1.9GB	/store/CSA06/2006/8/29/CSA06-083-os-EWKSoup/BC618054-573D-DB11-80
	EVD	1747	1.8GB	/store/CSA06/2006/8/29/CSA06-083-os-EWKSoup/D45B73F1-5F3D-DB11-A
	EVD	1717	4.0CD	interplice & 06/9096/0729/06 ADS 002 on EMIZEOUR/DAASDEDD 7D2D DD44 E

Release Specs

readable

Click

Block name

format as well

/CSA06-081-os-minbias/CMSSW_0_8_1-GEN-SIM-DIGI-1154005302-merged#87

/CSA06-081-os-minbias/CMSSW_0_8_1-GEN-SIM-DIGI-1154005302-merged#911c3e56-dfa9-4f67-b0db-458a8dc2

CSA06-083-os-EWKSoup/CMSSW_0_8_3-GEN-SIM-DIGI-HLT-1156877645-merged#26578d92-7624-4d5c-bcf9-at

/CSA06-083-os-Jets/CMSSW_0_8_3-GEN-SIM-DIGI-HLT-1156877643-merged#23cb9bb5-a464-434c-a51b-d1a7fe
Trieste CMS DM and Monitor 20

Stefano Belforte INFN Trieste

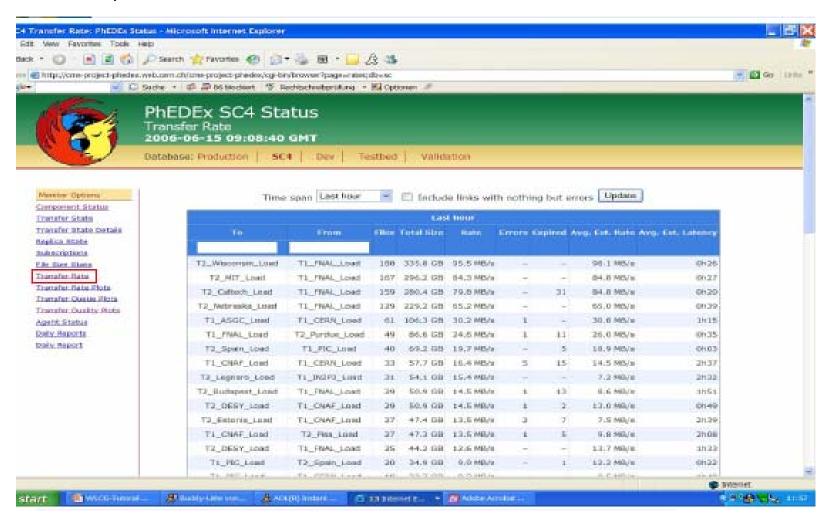
Monitor the data transfers

- Layered set of tools
 - > PhEDEx: moves CMS datasets
 - rich set of web pages and graphs
 - more features and new web site in development
 - > FTS: moves files, some retries, hides SRM details, implements access policies on "site A to site B" traffic
 - no general monitoring tool yet
 - see FTS tutorial tomorrow
 - > SRM/gsiftp: low level single file transfer tool
 - http://Gridview.cern.ch monitoring based on gridFtp logs
 - does not cover all sites in practice at present

Monitoring and control in PhEDEx

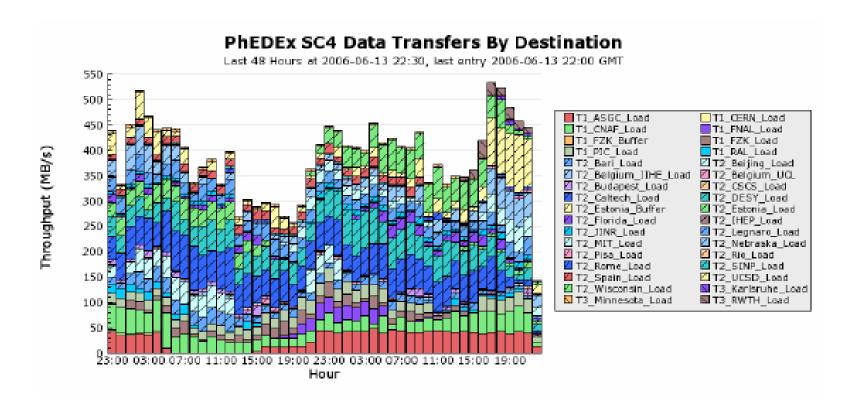
http://cmsdoc.cern.ch/cms/aprom/phedex/prod/

See also


http://agenda.cern.ch/askArchive.php?base=agenda&categ=a062664&id=a062664&0t12/transparencies

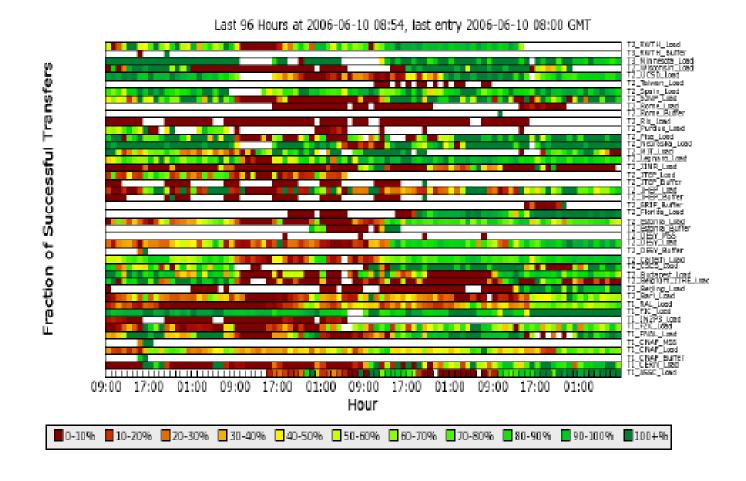
PhEDEx example (more on Sunday)

Transfer rates



More PhEDEx example

- Transfer rate time plots
- Can select source, destination, link, time interval..



More PhEDEx example

- Transfer quality plots (fraction of successful transfers)
- Can select source, destination, link, time interval..

Monitoring CMS jobs

- There is site monitoring and grid monitoring
- CMS adds own tool for application monitoring
 - Correlate/aggregate information based on application specific information that site or grid does not know
 - which data does the job access
 - is this real production or test?
 - user's analysis or organized physics groups activity
 - was the application (CMS SW) successful? Why?

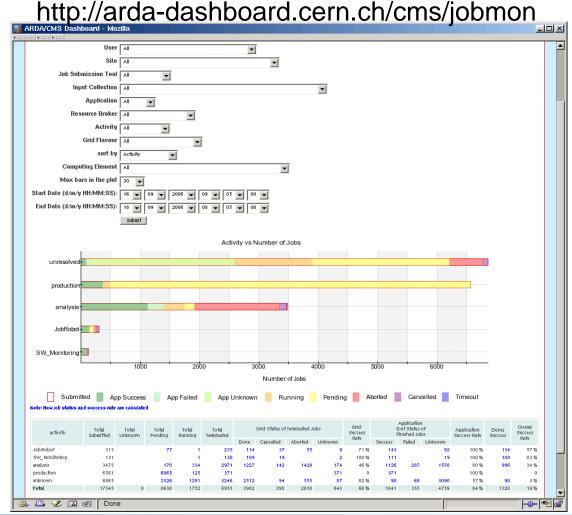
Strategy

- Instrument job to report about itself at submission, execution, completion times
- Via hooks in job management tools (Crab, ProductionAgent)
- > Via hooks in job wrapper
- > Collect all data in central Database
- > Have interactive "dig-in" browser and static plots

CMS Dashboard

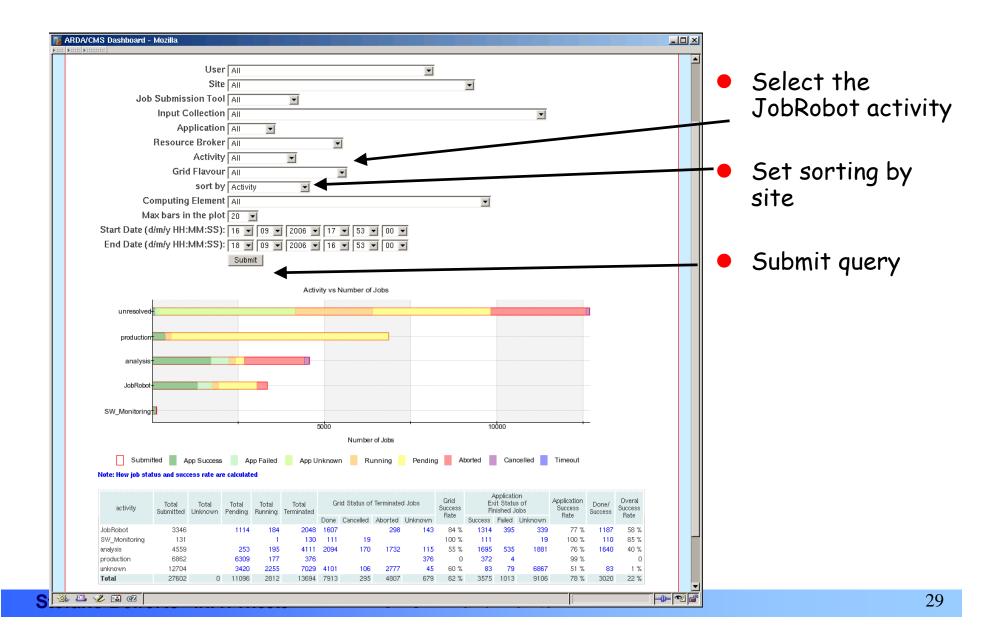
- http://arda-dashboard.cern.ch/cms/
- Explore around, there are quite a few useful things
- Next slides show examples from "Job Monitoring" links

 See also Michael Ernst tutorial at June's T2 Workshop <u>http://agenda.cern.ch/askArchive.php?base=agenda&categ=a06266</u> <u>4&id=a062664s0t12/transparencies</u>

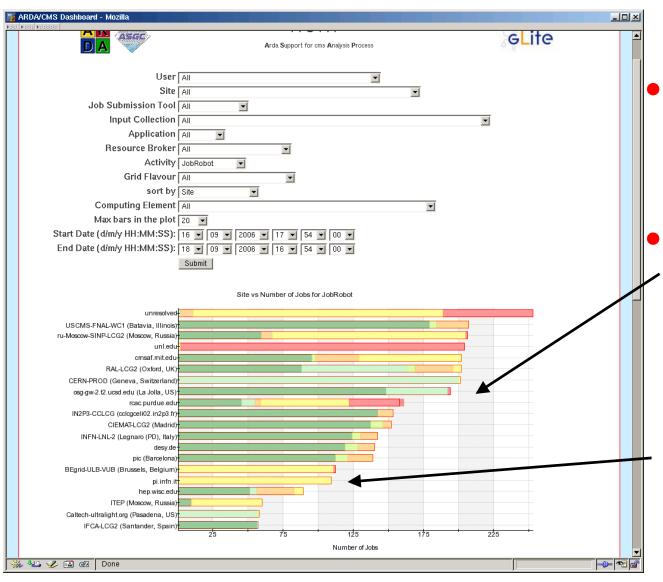

CMS Job Dashboard

Tutorial at last CMS week:

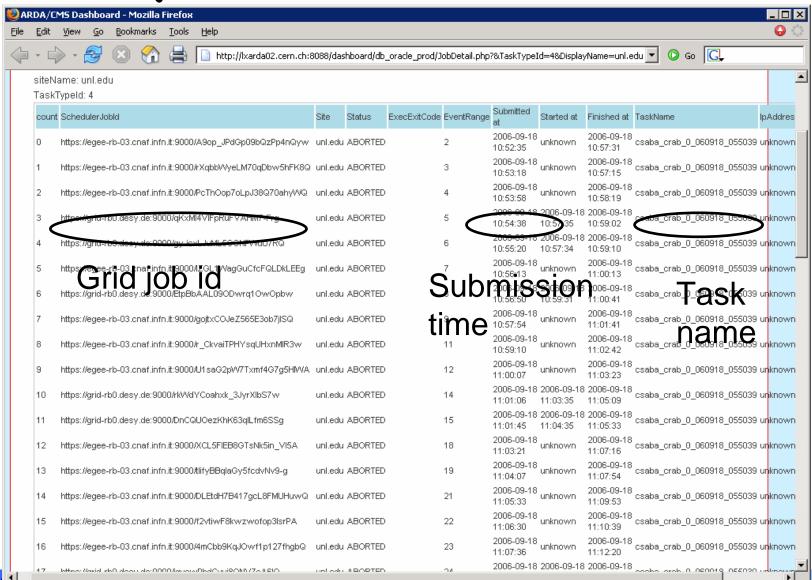
http://indico.cern.ch/materialDisplay.py?contribId=62&sessionId=4 &materialId=slides&confId=5878


- Running Oracle back-end and PHP web UI.
- Reading data from various sources
- Gaining valuable experience running such a service
 - Performance
- Currently we are working towards the next versions of the Dashboard with extended scope
 - > Tier-0 (CMS)
 - Grid reliability
 - Service monitoring (SAM, 3D)

Using the Dashboard for Job Monitoring

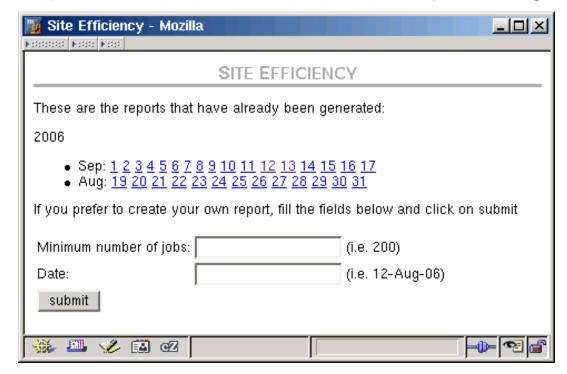


Using the Dashboard for Job Monitoring


- Bar with large amount of red colour implies to a temporary problem with many aborted jobs.
- Green colour indicates successful job execution

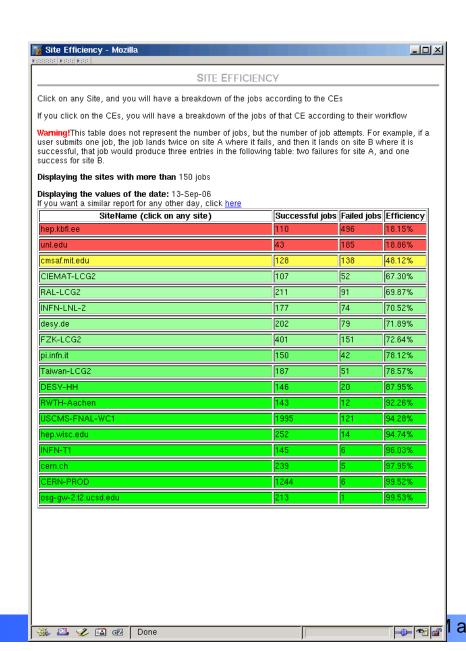
Using the Dashboard for Job Monitoring

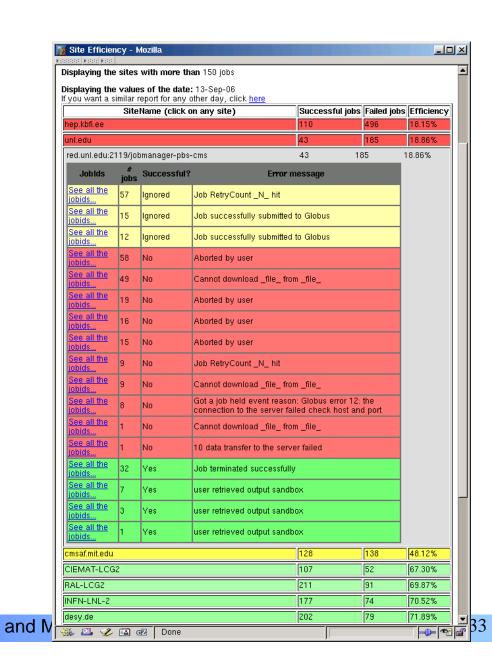
Can tell if jobs failed before or after execution start, and when



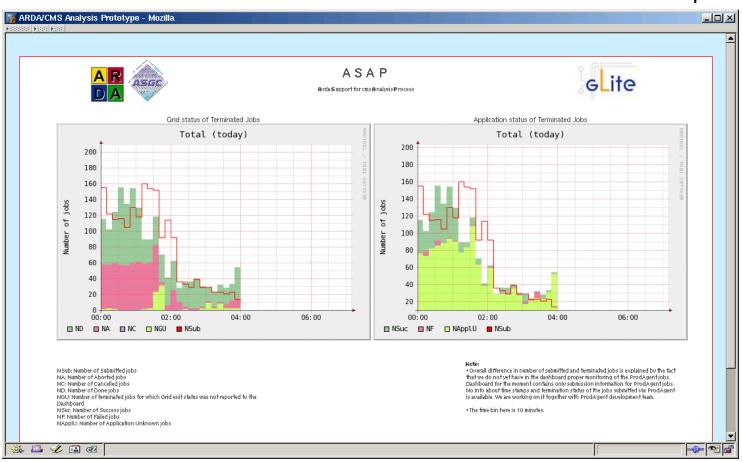
Grid Reliability – Site Efficiency

- The Grid Reliability project was triggered by the experience of the Dashboard project
- The Goal: present real reasons of job failures based on analyzing the R-GMA log files


http://arda-dashboard.cern.ch/cms/jobmon-gr

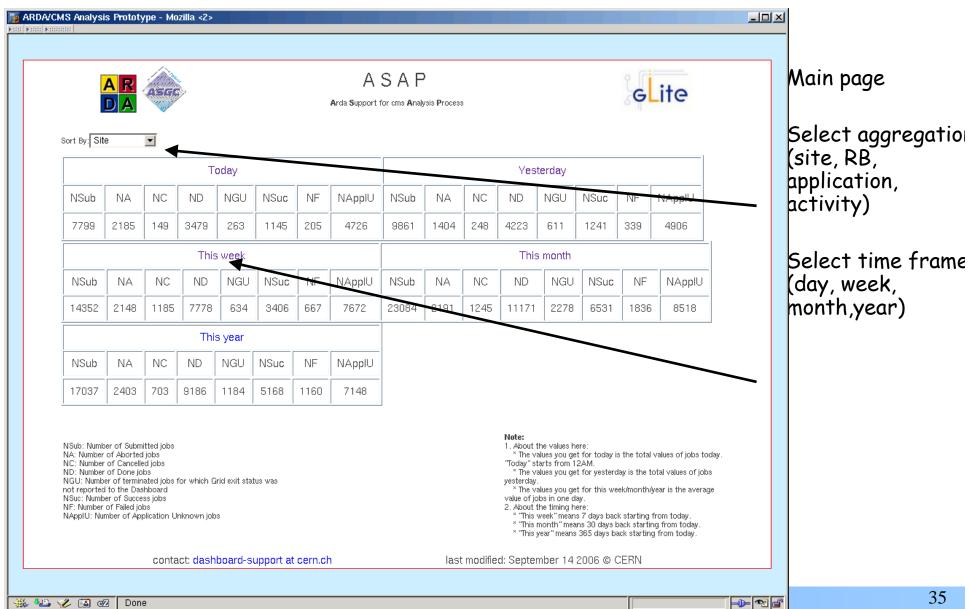


Grid Reliability – Site Efficiency

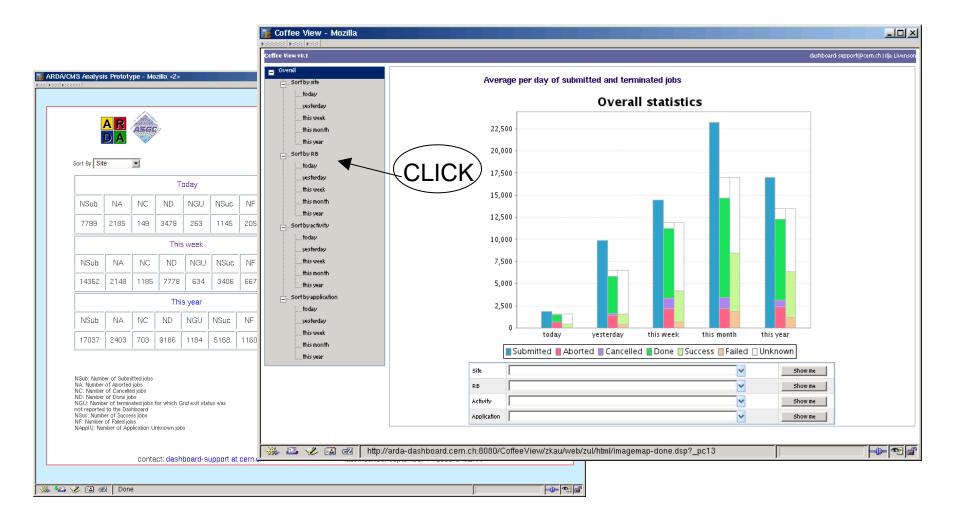


Pre-defined views ("coffee views")

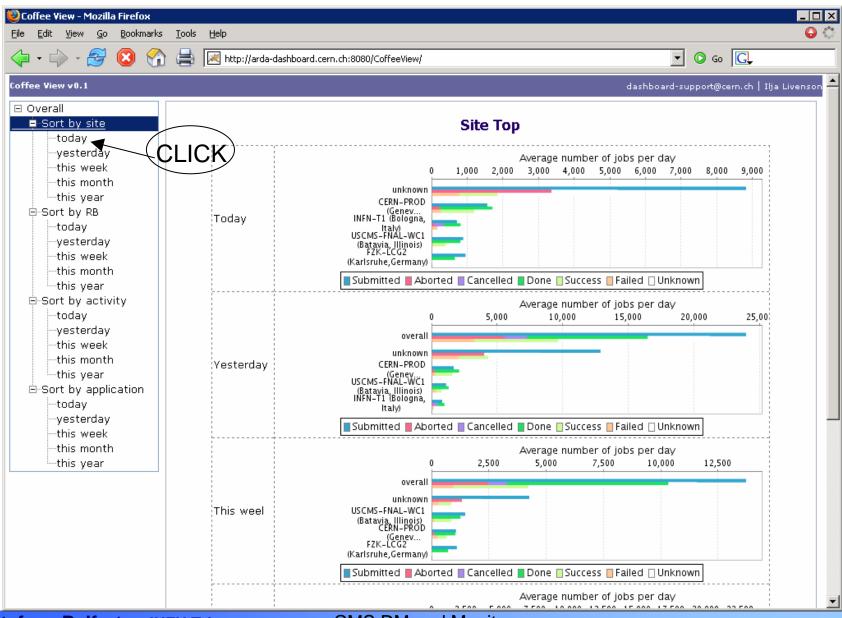
- > Fast plots, by time period, time history
- http://arda-dashboard.cern.ch/cms/jobmon-history


Example of time history

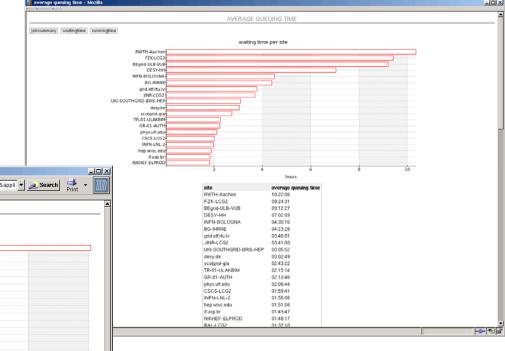
Navigation by table

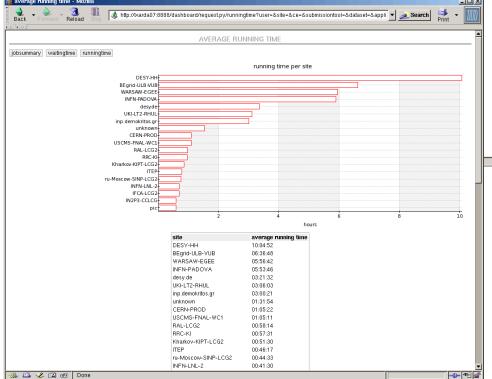


Navigation by click on pictures


- > Graphical interface as an entry point for the time history
- > http://arda-dashboard.cern.ch:8080/CoffeeView/

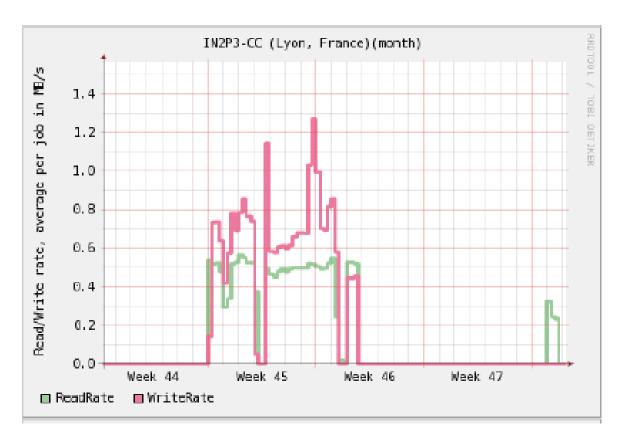
Keep clicking to discover more plots





Jobs waiting and running times

- Per site
- Per application type
- Per user (group)



Data access rates at the site

I/O rate in MB/s

To be used together with local monitoring, dashboard gets this from job summaries, and can aggregate for application, task within CMS. Site monitoring usually sum all usage by possibly several experiments.

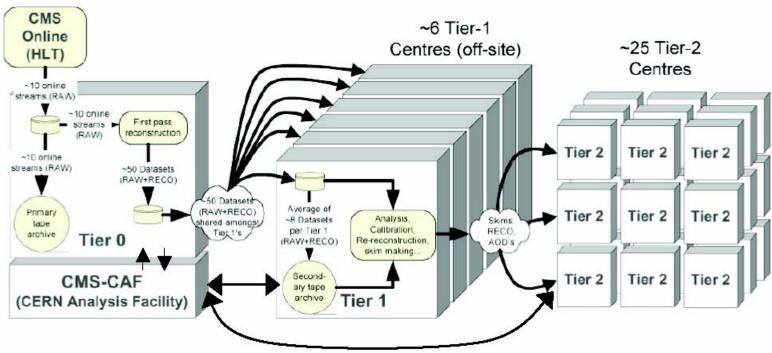
Summary on monitoring

- When one needs to understand a complicated system (a Tier2 is complicated enough), information is never too much
- Therefore CMS develops internal monitoring tools to complement more standard fabric monitoring tools
- PhEDEx and Job Dashboard monitoring allow to look at things from the CMS perspective, aggregating information that makes sense with respect to CMS operations
 - CMS datasets
 - > CMS applications, tasks
 - > CMS users, groups

Conclusion

• Questions?

Spares



Spare slides follow

Tiered Architecture

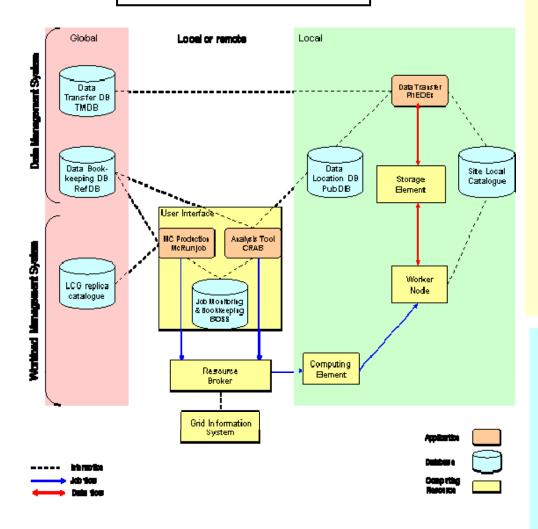
Tier-0:

- Accepts data from DAQ
- Prompt reconstruction
- Data archive and distribution to Tier-1's

Tier-1's:

- Real data archiving
- Re-processing
- Skimming and other dataintensive analysis tasks
- Calibration
- MC data archiving

Tier-2's:


- User data Analysis
- MC production
- Import skimmed datasets from Tier-1 and export MC data
- Calibration/alignment

WMS & DMS Services Overview

Current WMS & DMS

Data Management System

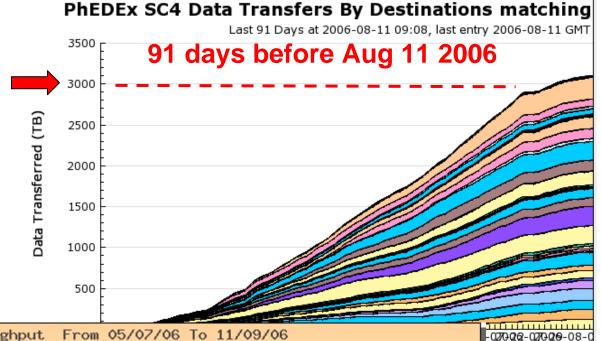
- No global file replica catalogue
- Data Bookkeeping and Data Location Systems
 - What data exist & where are located
- Local File catalogue
- Data Access and Storage
 - SRM and posix-IO-like
- Data Transfer and placement system
 - > PhEDEx

Workload Management System

- Rely on Grid Workload Management
 - Reliability, performance, monitoring, resource management, priorities
- CMS-specific job submission, monitoring and bookkeeping tools

Data Processing

- Data are used by workflows. All workflows the same (roughly):
 - > MonteCarlo, Reconstruction, Analysis...
 - > Run application on all files of Dataset D-In (or just N times for Initial MC generation), produce Dataset D-Out
- In practice
 - Access DBS to list Fileblocks for D-In. Access DLS to find locations
 - > Split in N jobs to exploit farms. Obtain N output files
 - copy those files to final destination (now or later)
 - > Register N files in Dataset D-Out in DBS/DLS
- Special (and VERY common) case: file merging
 - Collect/merge N small outputs in fewer larger files (w/o mistakes)
 - > Is still the same workflow: run many jobs, each application instance reads many files to produce a single one.
- CMS ProductionAgent to address this




Test Tler0-Tier1 transfers at 2008 rates

More then 3PB of data transferred by CMS in 3 months

Over 300MB/sec peak from CERN to Tier1's

