Status and prospects for γ at LHCb 6th LHCb Implications Workshop

 $\mathsf{Dan} \; \underset{_{\mathsf{CERN}}}{\mathsf{Johnson}}$

on behalf of the LHCb collaboration

 13^{th} October 2016

D. Johnson (CERN)

 γ/ϕ_3 at LHCb

13 October 2016 1 / 3

The CKM phase γ : constraining the UT

2 Loop processes constrain the triangle apex more

- Least well-known angle is γ...
- ... can be determined at tree-level with tiny theory uncertainty JHEP 01 051
- **3** Direct measurements: $\gamma = 73.2^{+6.3\circ}_{-7.0}$ Indirectly: $\gamma = 66.9^{+0.94\circ}_{-3.44}$
- SM standard candle (assuming no NP at tree-level PRD 92(3) 033002)

Tree-level measurements of γ

Decay rates depend on γ for processes like:

$$X_b \to [F]_{Y_c} Z$$
 (e.g. $B^{\pm} \to [K^{\mp} \pi^{\pm}]_D K^{\pm}$)

- Final state F accessible to Y_c and $\overline{Y_c}$:
- $Z \in \{K, \pi, K^*...\}$

 γ is the weak phase difference between decay amplitudes with $b\to c\bar{u}s$ and $b\to u\bar{c}s$ transitions

D. Johnson (CERN)

Tree-level measurements of γ

Decay rates depend on γ for processes like:

 $X_b \rightarrow [F]_{Y_c} Z$

e.g.

X_b	$[F]_{Y_c}$	Z	
B^{\pm}	$[K\pi, K3\pi]_D$	K, π	Pseudo-flavour state, "ADS" PRL 78 3257
B^{\pm}	$[KK, \pi\pi, 4\pi]_D$	K, π	CP eigenstate, "(q)GLW" e.g. PLB 253 483
B^0	$[KK, \pi\pi]_D$	$K^{-}\pi^{+}$	B Dalitz analysis PRD 80 092002
B^0	$[K_{\rm S}^0 h^+ h^-]_D$	K*0	"GGSZ" PRD 63 036005

Aside from γ :

- *r_B*, δ_B (κ_B): B hadronic parameters vary
- *r*_D, δ_D: D hadronic parameters from CLEO
- D mixing corrections where necessary

D. Johnson (CERN)

• Selecting $B \rightarrow D$ decays at LHCb

An overview of new LHCb results:
B[±] → [Kπ, K3π, KK, ππ, 4π]_D{K, π} PLB 760 117
B⁰ → [Kπ, KK, ππ]_DKπ PRD 93 112018
B⁰ → [K⁰_Sh⁺h⁻]_DK^{*0} JHEP 1606 131

1) Selecting $B \rightarrow D$ decays at LHCb

Efficient hadronic trigger

- Hardware: Reduce 20 MHz crossing-rate to 1 MHz
- Software: Reduce to $\mathcal{O}(kHz)$ (high p_T track followed by multi-variate topological trigger)

- Topology: long B and D flight distances; large decay product impact parameter
- Kinematic: B momentum; high $p_{\rm T}$ solo-particle from B decay

D. Johnson (CERN)

• Selecting $B \rightarrow D$ decays at LHCb

An overview of new LHCb results: $B^{\pm} \rightarrow [K\pi, K3\pi, KK, \pi\pi, 4\pi]_D \{K, \pi\} \text{ PLB 760 117}$ $B^{0} \rightarrow [K\pi, KK, \pi\pi]_D K\pi \text{ PRD 93 112018}$ $B^{0} \rightarrow [K_{S}^{0}h^{+}h^{-}]_D K^{*0} \text{ JHEP 1606 131}$

Typical decay rates with main sensitivity to γ

•
$$B^- \rightarrow [K^+\pi^-]_D K^-$$

• $\alpha r_D^2 + r_B^2 + 2r_B r_B^{K\pi} \cos(\delta_B + \delta_D^{K\pi} \mp \gamma)$
• $r_B = (9 \pm 1)\%; r_D^{K\pi} = (5.91 \pm 0.03)\%$
• Large interference
• $B^{\mp} \rightarrow [K^+K^-, \pi^+\pi^-]_D K^-$
• $\alpha 1 + r_B^2 + 2r_B \cos(\delta_B \mp \gamma)$
• Bigger rate; less interference
• $D^0 K^-$
• $r_B e^{i(\delta_B - \gamma)}$
• $B^- \omega \bar{c}s$
• $D^0 K^-$
• $C^- K^+ K^- D^0 K^-$
• $C^- K^- K^- D^0 K^-$

NB:

- Also study $D\pi$ system: expect $r_B^{\pi} \sim (0.5 1\%) \rightarrow$ much less interference
- Fit for ratios and asymmetries

< ロ > < 同 > < 三 > < 三

Extending to four-body final states

•
$$B^- \to [K^+ \pi^- \pi^+ \pi^-]_D K^-$$

- Resonances in $D \rightarrow K3\pi \Rightarrow$ varying $\delta_D^{K3\pi}$
- Dilution of interference parameterised by:
 - **★** Coherence factor $\kappa_D^{K3\pi} = 0.32 \pm 0.10$
 - * Ave. strong phase difference $\delta_D^{K3\pi}$
 - * PLB 757 520, PRL 116 241801
- $\blacktriangleright \propto r_D^{K3\pi2} + r_B^2 + 2\kappa_D^{K3\pi} r_B r_D^{K3\pi} \cos(\delta_B + \delta_D^{K3\pi} \mp \gamma)$

$$B^{-}_{\tau_{B}e^{i(\delta_{B}-\gamma)}} [\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{-}$$

•
$$B^{\mp} \to [\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{-}$$

- Dilution of interference due to resonances
 - ★ CP-even fraction $F_{+}^{4\pi} = 0.737 \pm 0.032$ ★ PLB 747.9
- $\blacktriangleright \propto 1 + r_B^2 + 2(2F_+^{4\pi} 1)r_B\cos(\delta_B \mp \gamma)$

Favoured mode

- Share aspects of the signal fit PDFs and constrain backgrounds
- B^{\pm} production asymmetry : assume no interference in favoured decay mode
 - ▶ Small (0.2%) systematic estimated using current knowledge of γ , r_B^{π}
- Detection asymmetries : using charm calibration samples

D. Johnson (CERN)

13 October 2016 10 /

2 body suppressed 'ADS' mode 8σ CPV

•
$$A_{ADS(K)}^{\pi K} = -0.403 \pm 0.056 \pm 0.011$$

• First observation of CPV in a single $B \to Dh$ mode
• $A_{ADS(\pi)}^{\pi K} = 0.100 \pm 0.031 \pm 0.009$

D. Johnson (CERN)

13 October 2016 🛛 11 /

4 body suppressed 'ADS' mode

•
$$A_{ADS(K)}^{\pi K \pi \pi} = -0.313 \pm 0.102 \pm 0.038$$

• Value of $\delta_D^{K3\pi} \Rightarrow$ expect same sign as $A_{ADS(K)}^{\pi K}$
• $A_{ADS(\pi)}^{\pi K} = 0.023 \pm 0.048 \pm 0.005$

D. Johnson (CERN)

13 October 2016 12 /

2 body 'GLW' modes 5σ CPV

•
$$A_{GLW(K)}^{KK} = 0.087 \pm 0.020 \pm 0.008$$

•
$$A_{GLW(K)}^{\pi\pi} = 0.128 \pm 0.037 \pm 0.012$$

D. Johnson (CERN)

(日) (同) (三) (三)

Fits to the four-body 'quasi-GLW' mode

•
$$A_{ADS(\pi)}^{\pi\pi\pi\pi} = 0.100 \pm 0.034 \pm 0.018$$

- First time this mode has been analysed!
- Expect the asymmetry to be diluted by $\sim (2F_+^{4\pi}-1)$ with respect to 2-body

Remember:

- $A_{ADS(K)}^{KK} = 0.087 \pm 0.020 \pm 0.008$
- $A_{ADS(K)}^{\pi\pi} = 0.128 \pm 0.037 \pm 0.012$

D. Johnson (CERN)

Conclusion

- Much greater precision in 'ADS' asymmetry measurements
- New measurements of 'GLW' asymmetries, adding the 4π mode

• Other observables compatible with expectation

(日) (同) (三) (三)

• Selecting $B \rightarrow D$ decays at LHCb

② An overview of new LHCb results:
B[±] → [Kπ, K3π, KK, ππ, 4π]_D{K, π} PLB 760 117
B⁰ → [Kπ, KK, ππ]_DKπ PRD 93 112018
B⁰ → [K⁰_Sh⁺h⁻]_DK^{*0} JHEP 1606 131

 $\ensuremath{\textcircled{}}\ensuremath{ensuremath{}}\ensuremath{ensuremath{}}\ensuremath{ensuremath{}}\ensuremath{ensuremath{ensuremath{}}\ensuremath{ensuremath{ensuremath{}}\ensuremath{ensuremath{ensuremath{ensuremath{}}\ensuremath{ensuremath{ensuremath{ensuremath{ensuremath{ensuremath{ensure$

2.2) Case study: $B^0 \rightarrow [K\pi, KK, \pi\pi]_D K\pi$

Anticipate large CPV:

- For $B^+ \to DK^+$, $b \to u\bar{c}s$ is colour- and CKM-suppressed wrt $b \to c\bar{u}s$
- For $B^0 \rightarrow DK^{*0}$ (dominant), both $b \rightarrow ...$ amplitudes are colour-suppressed

Method:

- Reconstruct 1) $\overline{D}{}^0 \rightarrow K^+\pi^-$, 2) $D_{CP} \rightarrow K^+K^-$ and 3) $D_{CP} \rightarrow \pi^+\pi^-$
- Train one neural network each using $B^0
 ightarrow D\pi^+\pi^-$ data
- Use sidebands to determine background models and efficiency variations in the Dalitz plot for each bin of NN response
- Simultaneous fit of amplitude model (based on PRD 92 012012) to the three samples

(日) (周) (三) (三)

2.2) Case study: $B^0 \rightarrow [K\pi, KK, \pi\pi]_D K\pi$

Dalitz fit:

- Divide the data into five bins of neural net response (discard the lowest)
- Total signal: 2,800 ($D \rightarrow K\pi$); 340 ($D \rightarrow KK$); 170 ($D \rightarrow \pi\pi$)
- For the favoured, $D \to K\pi$, mode, assume negligible interference in amplitude model:

$$A\left(m^{2}(D\pi^{-}),m^{2}(K^{+}\pi^{-})\right) = \sum_{j=1}^{N} c_{j}F_{j}\left(m^{2}(D\pi^{-}),m^{2}(K^{+}\pi^{-})\right)$$

• For KK and $\pi\pi$ allow CP violation in $K\pi$ resonances:

$$c_j \longrightarrow \begin{cases} c_j & \text{for a } D\pi^- \text{ resonance }, \\ c_j \left[1 + x_{\pm,j} + iy_{\pm,j} \right] & \text{for a } K^+\pi^- \text{ resonance }, \end{cases}$$

13 October 2016 18 / 3

2.2) Case study: $B^0 \rightarrow [K\pi, KK, \pi\pi]_D K\pi$

Conclusion

- Important new sensitivity; anticipating non-zero r_B
- Statistically unlucky this timen: no visible CP violation (x_+, y_+, x_-, y_-)

- Compute hadronic parameters for quasi-two-body analyses of B → DK*(892)⁰:
 - Coherence factor: $\kappa = 0.958^{+0.005+0.002}_{-0.010-0.045}$
 - ▶ Relative magnitude: r_B/r_B = 1.02^{+0.03}_{-0.01} ± 0.06
 - Relative strong phase: $\bar{\delta_B} - \delta_B = 0.02^{+0.03}_{-0.02} \pm 0.11$

• Selecting $B \rightarrow D$ decays at LHCb

An overview of new LHCb results:
B[±] → [Kπ, K3π, KK, ππ, 4π]_D{K, π} PLB 760 117
B⁰ → [Kπ, KK, ππ]_DKπ PRD 93 112018
B⁰ → [K⁰_Sh⁺h⁻]_DK^{*0} JHEP 1606 131

 $\ensuremath{\textcircled{}}\ensuremath{ensuremath{}}\ensuremath{ensuremath{}}\ensuremath{ensuremath{}}\ensuremath{ensuremath{ensuremath{}}\ensuremath{ensuremath{ensuremath{}}\ensuremath{ensuremath{ensuremath{ensuremath{}}\ensuremath{ensuremath{ensuremath{ensuremath{ensuremath{ensuremath{ensure$

2.3) Case study: $B^0 \rightarrow [K^0_{s}hh]_D K^{*0}$

Two new analyses of $B^0 \rightarrow DK^{*0}$ decays, using GGSZ method

- Branching fraction is factor 20 lower than $B^\pm o DK^\pm$
- $b \rightarrow c \bar{u}s$ & $b \rightarrow u \bar{c}s$ via internal- $W \Rightarrow r_{B^0} = 0.3 \Rightarrow$ more interference
- Resolves ambiguities in ADS/GLW analyses
- Two methods to handle D strong phase variation in Dalitz plot:
 - Model-independent: JHEP 06 131
 - ★ Uses measured $\Delta \delta_D$ from CLEO in Dalitz regions
 - Model-dependent: JHEP 08 137
 - Amplitude model. Statistically optimal but model-related systematic uncertainties hard to define and determine

D. Johnson (CERN)

 γ/ϕ_3 at LHCb

13 October 2016 21 /

2.3) Case study: $B^0 \rightarrow [K^0_{\rm s} hh]_D K^{*0}$

 $B^0 \rightarrow DK^{*0}$ dataset:

- ~80-90 candidates in $D o K^0_{
 m S} \pi^+ \pi^-$
- ~ 10 candidates in $D \rightarrow K^0_{\rm S} K^+ K^-$ (model-independent only)

Analysis method in Model-independent approach:

- Compare distribution in bins of the Dalitz plot
- $N_i(B^0) \propto F_{\mp i} + (x_+^2 + y_+^2)F_{\pm i} + 2\kappa\sqrt{F_{+i}F_{-i}}(x_+c_{\pm i} y_+s_{\pm i})$
 - Measure $x_{\pm} = r_B \cos(\delta_B \pm \gamma)$, $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$)
 - Input CLEO measurements of average $\cos(\delta_D)$ and $\sin(\delta_D)$ at the $\psi(3770)$
 - $F_{\pm i}$ from flavour-tagged D decays
 - Employ coherence factor from $B^0 \rightarrow DK^+\pi^-$ amplitude analysis

Model-independent results (just 100 signal candidates!)

- Statistical uncertainty includes c_i and s_i (~ 0.02 for x and 0.05 for y)
- Model-dependent analysis gives compatible results

• Selecting $B \rightarrow D$ decays at LHCb

An overview of new LHCb results:
B[±] → [Kπ, K3π, KK, ππ, 4π]_D{K, π} PLB 760 117
B⁰ → [Kπ, KK, ππ]_DKπ PRD 93 112018
B⁰ → [K⁰_Sh⁺h⁻]_DK^{*0} JHEP 1606 131

Putting it altogether: γ from LHCb

 B^+ combination

D. Johnson (CERN)

 γ/ϕ_3 at LHCb

13 October 2016 25 / 3

Putting it altogether: γ from LHCb

Result for γ

- $\bullet\,$ Improves the previous LHCb-only determination by 2°
- Reaches Run 1 target sensitivity
- Good agreement with the B-factory results:

BaBar:
$$\gamma = (70 \pm 18)$$

Belle: $\gamma = (73^{+13}_{-15})^{\circ}$

D. Johnson (CERN)

Updated time-dependent analysis of $B_s^0 \rightarrow D_s K$ (full Run 1)

- Large interference effects expected at tree level; interesting to compare with time indep. analyses
- LHCb is the ideal place for this study:
 - Tripled int. lumi & improved selection with respect to our first analysis
 - High B⁰_s production rate in pp; efficient hadronic trigger
 - Excellent time resolution; strong flavour tagging capabilities
- Measures $\gamma 2\beta_s$ and input precise measurement of β_s using $B_s^0 \to J/\psi \phi$ (penguin pollution $\Rightarrow \mathcal{O}(1^\circ)$)
- Future potential to instead constrain further β_s without penguin pollution uncertainties

Parallel analysis of $B^0 \rightarrow D^{\pm} \pi^{\mp}$ to measure $\gamma + 2\beta$ (full Run 1)

Many complementary combinations of existing \boldsymbol{B} and \boldsymbol{D} modes still to be explored

- New D modes:
 - $D \rightarrow KK\pi\pi$
 - $D \rightarrow K_{\rm s}^0 \pi \pi \pi^0$
- And new B modes:
 - $B \rightarrow D^*K$
 - $B \rightarrow DK^{*+}$
 - $\blacktriangleright B_s^0 \to D_s^{*+} K$
- \Rightarrow Investigations of all in progress

Assume that we will collect:

Sample	\mathcal{L} (fb $^{-1}$)	Units of Run-1
Run 1	3	1
Run 2	5	3
Upgrade	${\sim}50$	~ 60
Future Upgrade	\sim 300	\sim 360

Run 2:

• Higher $\sigma_{\rm prod}(b\bar{b})$ (more than 2); better trigger & offline selection efficiency

(Future) Upgrade:

- Assume hadronic trigger efficiency ~doubles
- Open up new potential sensitivity for γ e.g. $B_c^+
 ightarrow D_s^+ D_{
 m CP}$
 - Tree-level process with maximal CPV

Outlook: statistical and systematic uncertainties

Indirect γ precision is $\frac{+1.00}{-3.7}$. Will fall with lattice improvements Therefore target sub-degree precision.

Reduction in statistical uncertainties

• Assume fall as $\frac{1}{\sqrt{N}}$ (i.e. by 2 in Run 2 and ~ 8 (~ 19) in (future) upgrade)

Corresponding reduction in most systematic uncertainties

- Incorporate physics corrections (D mixing; K⁰_S mixing, CPV, regeneration; ...)
- Reduction in uncertainty on inputs
- Further study of backgrounds
- General improvements in methods

For the DK combination:

			Sample	$O_{\text{stat}}(\gamma)$	
•	Some channels reach $\sigma($	$(\gamma) \sim 1^{\circ};$	Run 1	8	
	compare channels		Run 2	4	
٩	LHCb and Belle II precis	sion similar in	Upgrade	~ 1	
	the Upgrade period		Future upgrade	<0.5	
			${}^{\bullet} \Box \rightarrow {}^{\bullet} \Box \rightarrow$	◆ 콜 ▶ → ▲ 콜 ▶ … 콜	うく
	D. Johnson (CERN)	γ/ϕ_3 at LHCb		13 October 2016	

Comme

 $\sigma = (\alpha)^{\circ}$

Limiting factors in the high-statistics era

Where will we become limited, as things stand:

- Most¹ $B \rightarrow DK$ modes rely on CLEO strong phase measurements at the $\psi(3770)$
- Allows for model independence; crucial in the high-statistics era
- $\bullet\,$ Current systematic due to CLEO inputs $\sim 2^\circ\,$
- Some *D* modes not analysed by CLEO; some would benefit from *D*-phasespace-binned analysis

Available now:

- Quadruplication of the CLEO dataset at BES III (\rightarrow systematic $\sim 1^\circ)$
 - Measurement in $D \rightarrow K\pi$ (Int.J.Mod.Phys.Conf.Ser. 31 1460305)
 - Preliminary results in $D \to K^0_{
 m S} \pi \pi$
- Supplement (but not match) with strong phase measurements in charm mixing

To avoid systematic limitation in the upgrade era:

• Full spectrum of strong phase measurements with full 15-20 fb⁻¹ at BES III

¹not, e.g.,
$$B_s^0 \to D_s^+ K$$

D. Johnson (CERN) γ/ϕ_3 at LHCb 13 October 2016 31/32

Summary

- LHCb γ combination has reached anticipated Run 1 sensitivity. Many 'firsts' in *B* and *D* modes
- Will rely on exploitation of the full BES III potential to avoid syst. limitation in the LHCb upgrade
- Already surpassed Run 1 dataset in most channels. Exciting first analyses with Run 2 data imminent
 - (we'd hope for new material at CKM; watch this space!)

D. Johnson (CERN)

Backup material

3

$B^0 \rightarrow DK^{*0}$: model-independent & dependent results

Results: good compatability

Model-dependent

Last column is estimated model uncertainty

Model-independent

Statistical uncertainty includes c_i and s_i (~ 0.02 for x and 0.05 for y)

D. Johnson (CERN)	γ/ϕ_3 at LHCb
-------------------	-------------------------

Other LHCb tree-level measurements of γ

Many more modes studied:

- - $\blacktriangleright~\gamma$ changes distribution of points in the D Dalitz plot
 - Efficiency comes from $B^0 \rightarrow D^{*\pm} \mu^{\mp} \nu_{\mu}$
 - ▶ CP (e.g. $D \to K_S^0 \rho$) and pseudo-flavour (e.g. $D \to K^{*-} \pi^+$) resolves ambiguities in ADS/GLW analyses
 - δ_D depends on D Dalitz position, measured with $\psi(3770) \rightarrow D^0 \overline{D}^0$ by CLEO

$B^{\pm} \rightarrow [K^0_{\rm s} K^{\mp} \pi^{\pm}]_D \{ K, \pi \} ("GLS")$

- Use $D \to K^{*\pm} K^{\mp}$ Dalitz region
- Coherence factor, ave. δ_D and D BF ratio from CLEO
- $B^{\pm} \rightarrow [h^+ h^- \pi^0]_D \{K, \pi\} ("quasi-GLW")$
 - Challenge at LHCb to reconstruct the neutral π^0
 - Find CP fraction of decay at CLEO
- $B^{\pm} \to [K^{\mp}\pi^{\pm}\pi^{0}]_{D}\{K,\pi\}$ ("ADS")
 - Coherence factor, ave. δ_D and D BF ratio from CLEO
- $B_s^0 \to D_s^+ K$, time dependent
 - Interference between mixed and unmixed B⁰_s
 - Large interference effects

イロト 不得下 イヨト イヨト 二日

Putting it altogether: γ from LHCb

Previous result: CKM 2014 LHCb-CONF-2014-004

Included inputs from: "ADS/GLW"

- $B \rightarrow Dh, D \rightarrow hh$ (2011) PLB 712 203
- $B \rightarrow DK\pi\pi, D \rightarrow hh$ prd 92 112005
- $B \rightarrow DK^*, D \rightarrow hh$ prd 90 112002
- $B
 ightarrow DK, D
 ightarrow K_{
 m S}^0 K \pi$ plb 733 36

"GGSZ"

• $B \rightarrow DK, D \rightarrow K^0_{s}hh$ JHEP 10 097 (model-independent)

Time-dependent

• $B_s^0 \rightarrow D_s^{\mp} K^{\pm}, D_s^+ \rightarrow hhh^{\mp}$ JHEP 11 060 (time-dependent)

External

- Charm mixing and CPV parameters
- Relative magnitudes/strong phases, coherence factors
- B_s^0 mixing

Putting it altogether: γ from LHCb

New combination: Moriond 2016 LHCb-CONF-2016-001 Additional inputs from:

"ADS/GLW"

•
$$B^{\pm}
ightarrow DK^{\pm}, D
ightarrow hh$$
 (full Run 1) plb 760 117

- $B^{\pm} \rightarrow DK^{\pm}, D \rightarrow h\pi^{-}\pi^{+}\pi^{-}$ (ADS/quasi-GLW) PLB 760 117
- $B^{\pm} \rightarrow DK^{\pm}, D \rightarrow h\pi^{-}\pi^{0}$ (ADS/quasi-GLW) PRD 91 112014

•
$$B^0
ightarrow DK^+\pi^-, D
ightarrow hh$$
 (GLW Dalitz) PRD 93 112018

"GGSZ"

•
$$B o D {\cal K}^{*0}, D o {\cal K}^0_{
m S} \pi^+ \pi^-$$
 (model-dependent) JHEP 08 137

NB:

- Nominal method is plugin
- Uncertainties on external inputs included
- Exclude unphysical regions
- Bayesian cross-check carried out

Additional external inputs

- Charm rel. magnitudes/strong phases, coherence factors
- $B \rightarrow DK\pi$ rel. magnitudes/strong phases, coherence factors