Gauthier Durieux (DESY)

Modelling-independent searches for CP violation in multibody decays

PRD 92 (2015) 076013, [1508.03054] with Yuval Grossman (Cornell), spin-0 multibody decays

JHEP 10 (2016) 005, [1608.03288] spin-1/2 multibody decays

12-14 October 2016 LHCb Implications Workshop

Multibody hadronic decays

· Multidimensional phase space

Large statistics

'	-0		
	$D^{ m o} ightarrow K^+ K^- \pi^+ \pi^-$	171300 ± 600 candidates	[1408.1299]
	$\Lambda_b o p \pi^- \pi^+ \pi^-$	6646 ± 105	[1609.05216]
	$\Lambda_b o p \pi^- K^+ K^-$	1030 ± 56	[1609.05216]
	$\Lambda_b o \Lambda \phi o p \pi^- K^+ K^-$	89 ± 13	[1603.02870]
	$\Lambda_b ightarrow \Lambda K^+ K^- ightarrow p \pi^- K^+ K^-$	185 ± 15	[1603.00413]
	$\Lambda_b o ho K^- J\!/\!\psi o ho K^- \mu^+ \mu^-$	28834 ± 204	[1603.06961]
	$\Lambda_b o p K^- \psi(2S) o p K^- \mu^+ \mu^-$	665 ± 28	[1603.06961]

The paradox of richness and complexity

· Rich variety of interfering contributions

Intermediate states in $D^0 o K^+ K^- \pi^+ \pi^-$	${\rm Br}/10^{-4}$
$\overbrace{\qquad \qquad }^{} \overbrace{\qquad \qquad \qquad }^{} (\phi \rho^{0})_{S}, \phi \to K^{+}K^{-}, \rho^{0} \to \pi^{+}\pi^{-}$	$\begin{array}{c} 9.3 \pm 1.2 \\ 0.83 \pm 0.23 \end{array}$
$\checkmark (K^{*0}\overline{K}^{*0})_{\mathcal{S}}, K^{*0} \to K^{\pm}\pi^{\mp}$	1.48 ± 0.30
$\checkmark \qquad \qquad$	2.50 ± 0.33
$\longleftarrow (K^-\pi^+)_P(K^+\pi^-)_S$	2.6 ± 0.5
$\begin{array}{ccc} {\cal K}_1^+{\cal K}^-, & {\cal K}_1^+ \to {\cal K}^{*0}\pi^+ \\ {\cal K}_1^-{\cal K}^+, & {\cal K}_1^- \to {\cal \overline{K}}^{*0}\pi^- \end{array}$	$\begin{array}{c} 1.8\pm0.5\\ 0.22\pm0.12\end{array}$
$\overbrace{{K_1^+ K^-, \ K_1^- \to \rho^0 K^+}}^{K_1^+ K^-, \ K_1^- \to \rho^0 K^+} K_1^- \xrightarrow{K_1^+ K^+, \ K_1^- \to \rho^0 K^-}$	$\begin{array}{c} 1.14 \pm 0.26 \\ 1.46 \pm 0.25 \end{array}$
$K^*(1410)^+K^-, K^*(1410)^+ \to K^{*0}\pi^+$ $K^*(1410)^-K^+, K^*(1410)^- \to \overline{K}^{*0}\pi^-$	$\begin{array}{c} 1.02 \pm 0.26 \\ 1.14 \pm 0.25 \end{array}$

[CLEO '12]

Opportunities for CP violation searches but also modelling challenges!

CP-violation in distributions and motion reversal $\hat{\mathsf{T}}$

Targeting ' $\cos \delta \sin \varphi$ ' terms in decay amplitudes Spinless case: modelling-independent analysis Spinful case: resolving ambiguities

Motion reversal $\hat{\mathsf{T}}$

 $\hat{\mathsf{T}}$ flips \vec{p} and \vec{s} . (often called *naive time reversal*)

 $\hat{\mathsf{T}}$ -oddity arises from $\epsilon_{\mu\nu\rho\sigma}p^{\mu}q^{\nu}r^{\rho}s^{\sigma}$ contractions ...

 ϵ from the Lagrangian: $i\tilde{F}^{\mu\nu} \equiv \frac{i}{2}\epsilon_{\mu\nu\rho\sigma}F^{\rho\sigma}$ ϵ from chiral fermions: $\gamma^5 \equiv \frac{i}{4!}\epsilon_{\mu\nu\rho\sigma}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}$

> ... of four independent momenta or spin vectors. \rightarrow minimal multiplicity

e.g. spinless four-body decays

Differential CP violation

Compare the CP-conjugate amplitudes (squared) $\mathcal{M}(\{\vec{p}_i, \sigma_i\})$ and $\bar{\mathcal{M}}(\{-\vec{p}_{\bar{\imath}}, -\sigma_{\bar{\imath}}\})\Big|_{\vec{p}_{\bar{\imath}}=\vec{p}_i, \sigma_{\bar{\imath}}=\sigma_i}$ phase-space point by phase-space point.

 $\begin{array}{l} \mbox{Contributions of definite} \cdot \textit{strong } \delta \mbox{ and } \textit{weak } \varphi \mbox{ phases} \\ \cdot \mbox{ } \hat{T} \mbox{ transformation properties} \end{array}$

$$\begin{split} \mathcal{M}(\{\vec{p}_i,\sigma_i\}) &= & \bar{\mathcal{M}}(\{-\vec{p}_i,-\sigma_i\}) = \\ &+a(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_a+\varphi_a)} &+a(\{-\vec{p}_i,-\sigma_i\}) e^{i(\delta_a-\varphi_a)} \\ &+b(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_b+\varphi_b)} &+b(\{-\vec{p}_i,-\sigma_i\}) e^{i(\delta_b-\varphi_b)} \\ &+c(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_c+[\varphi_c+\pi/2])} &+c(\{-\vec{p}_i,-\sigma_i\}) e^{i(\delta_c-[\varphi_c+\pi/2])} \\ &+\cdots &+\cdots \end{split}$$

with
$$a(\{-\vec{p}_i, -\sigma_i\}) = +a(\{\vec{p}_i, \sigma_i\})$$
 \hat{T} -even
 $b(\{-\vec{p}_i, -\sigma_i\}) = +b(\{\vec{p}_i, \sigma_i\})$ \hat{T} -even
 $c(\{-\vec{p}_i, -\sigma_i\}) = -c(\{\vec{p}_i, \sigma_i\})$ \hat{T} -odd
...

Differential CP violation

Compare the CP-conjugate amplitudes (squared) $\mathcal{M}(\{\vec{p}_i, \sigma_i\})$ and $\bar{\mathcal{M}}(\{-\vec{p}_{\bar{\imath}}, -\sigma_{\bar{\imath}}\})\Big|_{\vec{p}_{\bar{\imath}}=\vec{p}_i, \sigma_{\bar{\imath}}=\sigma_i}$ phase-space point by phase-space point.

 $\begin{array}{l} \mbox{Contributions of definite} \cdot \textit{strong } \delta \mbox{ and } \textit{weak } \varphi \mbox{ phases} \\ \cdot \mbox{ } \hat{T} \mbox{ transformation properties} \end{array}$

$$\begin{split} \mathcal{M}(\{\vec{p}_i,\sigma_i\}) &= & \bar{\mathcal{M}}(\{-\vec{p}_i,-\sigma_i\}) = \\ &+ a(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_a+\varphi_a)} &+ a(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_a-\varphi_a)} \\ &+ b(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_b+\varphi_b)} &+ b(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_b-\varphi_b)} \\ &+ c(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_c+[\varphi_c+\pi/2])} &- c(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_c-[\varphi_c+\pi/2])} \\ &+ \cdots &+ \cdots \end{split}$$

with
$$a(\{-\vec{p}_i, -\sigma_i\}) = +a(\{\vec{p}_i, \sigma_i\})$$
 \hat{T} -even
 $b(\{-\vec{p}_i, -\sigma_i\}) = +b(\{\vec{p}_i, \sigma_i\})$ \hat{T} -even
 $c(\{-\vec{p}_i, -\sigma_i\}) = -c(\{\vec{p}_i, \sigma_i\})$ \hat{T} -odd
...

Differential CP violation

Compare the CP-conjugate amplitudes (squared) $\mathcal{M}(\{\vec{p}_i, \sigma_i\})$ and $\bar{\mathcal{M}}(\{-\vec{p}_{\bar{\imath}}, -\sigma_{\bar{\imath}}\})\Big|_{\vec{p}_{\bar{\imath}}=\vec{p}_i, \sigma_{\bar{\imath}}=\sigma_i}$ phase-space point by phase-space point.

 $\begin{array}{l} \mbox{Contributions of definite} \cdot \textit{strong } \delta \mbox{ and } \textit{weak } \varphi \mbox{ phases} \\ \cdot \mbox{ } \hat{T} \mbox{ transformation properties} \end{array}$

$$\begin{split} \mathcal{M}(\{\vec{p}_i,\sigma_i\}) &= & \bar{\mathcal{M}}(\{-\vec{p}_i,-\sigma_i\}) = \\ &+ a(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_a+\varphi_a)} &+ a(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_a-\varphi_a)} \\ &+ b(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_b+\varphi_b)} &+ b(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_b-\varphi_b)} \\ &+ c(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_c+\varphi_c+\pi/2)} &+ c(\{\vec{p}_i,\sigma_i\}) e^{i(\delta_c-\varphi_c+\pi/2)} \\ &+ \cdots &+ \cdots \end{split}$$

with
$$a(\{-\vec{p}_i, -\sigma_i\}) = +a(\{\vec{p}_i, \sigma_i\})$$
 \hat{T} -even
 $b(\{-\vec{p}_i, -\sigma_i\}) = +b(\{\vec{p}_i, \sigma_i\})$ \hat{T} -even
 $c(\{-\vec{p}_i, -\sigma_i\}) = -c(\{\vec{p}_i, \sigma_i\})$ \hat{T} -odd
 \cdots

 \implies The φ phases is defined to contain all 'CP-oddity'.

CP violation and strong phases

Distributions of definite CP and $\hat{\mathsf{T}}$ transformation properties

$$\frac{d\Gamma}{d\Phi}\Big|_{CP-\text{even}}^{\hat{T}-\text{even}} \equiv \frac{\mathbb{I} \pm \hat{T}}{2} \quad \frac{\mathbb{I} \pm CP}{2} \quad \frac{d\Gamma}{d\Phi}$$
• $\frac{d\Gamma}{d\Phi}\Big|_{CP-\text{even}}^{\hat{T}-\text{even}} \propto a a + b b + c c$
 $+2 a b \cos(\delta_a - \delta_b)\cos(\varphi_a - \varphi_b)$
• $\frac{d\Gamma}{d\Phi}\Big|_{CP-\text{even}}^{\hat{T}-\text{odd}} \propto 2 a c \sin(\delta_a - \delta_c) \cos(\varphi_a - \varphi_c)$
 $+2 b c \sin(\delta_b - \delta_c) \cos(\varphi_b - \varphi_c)$
• $\frac{d\Gamma}{d\Phi}\Big|_{CP-\text{odd}}^{\hat{T}-\text{even}} \propto -2 a b \sin(\delta_a - \delta_b) \sin(\varphi_a - \varphi_b)$
• $\frac{d\Gamma}{d\Phi}\Big|_{CP-\text{odd}}^{\hat{T}-\text{odd}} \propto 2 a c \cos(\delta_a - \delta_c) \sin(\varphi_a - \varphi_c)$
 $+2 b c \cos(\delta_b - \delta_c) \sin(\varphi_a - \varphi_c)$

 \implies Four different sensitivities to strong and weak phases.

CP violation and strong phases

Distributions of definite CP and \hat{T} transformation properties

$$\frac{d\Gamma}{d\Phi}\Big|_{CP-even}^{\hat{T}-even} \equiv \frac{\mathbb{I} \pm \hat{T}}{2} \frac{\mathbb{I} \pm CP}{2} \frac{d\Gamma}{d\Phi}$$

$$\bullet \frac{d\Gamma}{d\Phi}\Big|_{CP-even}^{\hat{T}-even} \propto a a + b b + c c + 2 a b \cos(\delta_a - \delta_b)\cos(\varphi_a - \varphi_b)$$

$$\bullet \frac{d\Gamma}{d\Phi}\Big|_{CP-even}^{\hat{T}-odd} \propto 2 a c \sin(\delta_a - \delta_c)\cos(\varphi_a - \varphi_c) + 2 b c \sin(\delta_b - \delta_c)\cos(\varphi_b - \varphi_c)$$

$$\bullet \frac{d\Gamma}{d\Phi}\Big|_{CP-odd}^{\hat{T}-even} \propto -2 a b \sin(\delta_a - \delta_b)\sin(\varphi_a - \varphi_b)$$

$$\frac{d\Gamma}{d\Phi}\Big|_{CP-odd}^{\hat{T}-odd} \propto \cos\delta\sin\varphi' \qquad \begin{array}{c} \text{Sensitivity to small differences of CP-odd} \\ \text{sensitivity to small differences of cP-odd} \\ \end{array}$$

 \implies Four different sensitivities to strong and weak phases.

CP-violation in distributions and motion reversal $\hat{\mathsf{T}}$

Targeting ' $\cos \delta \sin \varphi$ ' terms in decay amplitudes Spinless case: modelling-independent analysis Spinful case: resolving ambiguities

Spinless case: **Î**-folding of the phase space

Spinless case: **Î**-folding of the phase space

Spinless case: T-folding of the phase space

Spinless case: modelling-independent analysis

1. Fix a phase-space parametrisation

which biases the analysis sensitivity

2. Define \hat{T} -odd–CP-odd asymmetries systematically over the full phase space

$$\mathcal{A}_{\{M_i\}\{M_j\}}^{kl} \equiv \int d\Phi \operatorname{sign} \left\{ P_k(\cos\theta_a) P_l(\cos\theta_b) \sin n(\phi_a + \phi_b) \right.$$
$$\prod_i (m_a^2 - M_i^2) \prod_j (m_b^2 - M_j^2) \left. \left. \left(\frac{1}{\overline{\Gamma}} \frac{d\overline{\Gamma}}{d\Phi} - \frac{1}{\overline{\overline{\Gamma}}} \frac{d\overline{\overline{\Gamma}}}{d\Phi} \right) \right.$$

3. back to 1., with another parametrisation

CP-violation in distributions and motion reversal $\hat{\mathsf{T}}$

Targeting ' $\cos \delta \sin \varphi$ ' terms in decay amplitudes Spinless case: modelling-independent analysis Spinful case: resolving ambiguities

Spinful case: preliminary remarks

One does not measure the spins of stable particles. Final-state spins will be summed over. Only is the initial polarization kept, only the P-even- \hat{T} -odd component P_z (\perp to the production plane).

One targets the phases of the weak decay amplitudes, rather than that of the strong production amplitudes.

One targets ' $\cos \delta \sin \varphi$ ' terms with sensitivity to small differences of CP-odd phases between amplitudes of identical —or vanishing— CP-even phases.

Spinful case: more richness to exploit ... More angles z_b y_b y_b y_b y_b y_a z_a

The polarization axis breaks a rotation symmetry.

The azimuthal angles appear in other combinations than $(\phi_a + \phi_b)$.

\hat{T} -oddity with lower multiplicity

namely, in the three-body decay of a polarized particle (3 independent momenta and 1 spin to form a $\epsilon_{\mu\nu\rho\sigma}p^{\mu}q^{\nu}r^{\rho}s^{\sigma}$)

e.g. $\Lambda_b \to \Lambda^* \gamma \to p K \gamma$ $\Lambda_b \to N^* K \to p \pi K$

New **T**-odd observables ...

- · proportional to the \hat{T} -odd polarization P_z
- many more \hat{T} -odd angular variables than sin $n(\phi_a + \phi_b)$:

```
cos \theta,

cos \phi_a, cos \phi_b,

cos(\phi_a + 2\phi_b),

...
```

Spinful case: more richness to exploit ... More angles z_b y_b y_b y_b y_b y_a y_a z_a

The polarization axis breaks a rotation symmetry.

The azimuthal angles appear in other combinations than $(\phi_a + \phi_b)$.

\hat{T} -oddity with lower multiplicity

namely, in the three-body decay of a polarized particle (3 independent momenta and 1 spin to form a $\epsilon_{\mu\nu\rho\sigma}p^{\mu}q^{\nu}r^{\rho}s^{\sigma}$)

e.g. $\Lambda_b \to \Lambda^* \gamma \to p K \gamma$ $\Lambda_b \to N^* K \to p \pi K$

New **T**-odd observables ...

- · proportional to the \hat{T} -odd polarization P_z
- many more \hat{T} -odd angular variables than sin $n(\phi_a + \phi_b)$:

$$\cos \theta$$
,
 $\cos \phi_a$, $\cos \phi_b$,
 $\cos(\phi_a + 2\phi_b)$,
... which cause \hat{T} -folding issues.

Spinful case: ... and new ambiguities

The folding along the P_z direction is not feasible. \implies the genuine \hat{T} -odd decay distribution is not accessible!

One can only form angular $\angle \hat{T}$ -odd distributions but, some only provide 'sin $\delta \sin \varphi$ ' sensitivities! and, some $\angle \hat{T}$ -even ones provide 'cos $\delta \sin \varphi$ ' sensitivities!

Some modelling is needed to resolve these new ambiguities. General modelling is provided by the helicity formalism. [Jacob, Wick 59'] Specifying the resonance+spin structure however becomes needed.

S	oinful	case:	resolving	ambig	guities
---	--------	-------	-----------	-------	---------

		0		0		*		
eσ	for	$\frac{1}{2} \rightarrow \frac{1}{2} \rightarrow \frac{1}{2} \rightarrow \frac{1}{2} \rightarrow 0 \rightarrow 0$	0	lika	$\Lambda_b \rightarrow$	$N^*\rho$ -	$\rightarrow p\pi\pi\eta$	τ
0.8	101			inte	$\Lambda_b \rightarrow$	$\cdot \wedge \phi$ –	$\rightarrow p\pi K$	K
	+3	$ A_{+} ^{2} + A_{-} ^{2}$					$\cos^2 \theta_b$	
	+3/2	$ B_+ ^2 + B ^2$					$\sin^2 \theta_b$	
	+3	$ A_{+} ^{2} - A_{-} ^{2}$	α_{a}			$\cos\theta_{a}$	$\cos^2 \theta_b$	
	+3/2	$ B_+ ^2 - B ^2$	α_{a}			$\cos\theta_{\rm a}$	$\sin^2 \theta_b$	
	$+3/\sqrt{2}$	$\operatorname{Re}\left\{A_{+}^{*}B_{-}\right\}-\operatorname{Re}\left\{A_{-}^{*}B_{+}\right\}$	$\alpha_{\rm a}$			$\sin\theta_{\rm a}$	$\sin 2\theta_b$	$\cos(\phi_{s}+\phi_{b})$
	+3	$ A_{+} ^{2} - A_{-} ^{2}$		P _z	$\cos \theta$		$\cos^2 \theta_b$	
	-3/2	$ B_+ ^2 - B ^2$		Pz	$\cos \theta$		$\sin^2 \theta_b$	
	$+3/\sqrt{2}$	$\operatorname{Re}\left\{A_{+}^{*}B_{+}\right\} - \operatorname{Re}\left\{A_{-}^{*}B_{-}\right\}$		Pz	$\sin\theta$		$\sin 2\theta_b$	$\cos \phi_b$
	+3	$ A_{+} ^{2} + A_{-} ^{2}$	α_{a}	P_z	$\cos \theta$	$\cos\theta_{a}$	$\cos^2\theta_b$	
	-3/2	$ B_+ ^2 + B ^2$	α_{a}	P_z	$\cos \theta$	$\cos\theta_{a}$	$\sin^2 \theta_b$	
	$+3/\sqrt{2}$	$\operatorname{Re}\left\{A_{+}^{*}B_{-}\right\}+\operatorname{Re}\left\{A_{-}^{*}B_{+}\right\}$	α_{a}	P_z	$\cos \theta$	$\sin \theta_a$	$\sin 2\theta_b$	$\cos(\phi_a + \phi_b)$
	$+3/\sqrt{2}$	$\operatorname{Re}\left\{A_{+}^{*}B_{+}\right\}+\operatorname{Re}\left\{A_{-}^{*}B_{-}\right\}$	α_{a}	P_z	$\sin\theta$	$\cos\theta_{\rm a}$	$\sin 2\theta_b$	$\cos \phi_b$
	-6	$\left\{A_{+}^{*}A_{-}\right\}$	α_{a}	P_z	$\sin\theta$	$\sin\theta_{a}$	$\cos^2\theta_b$	$\cos \phi_{a}$
	+3	$Re\left\{B_{+}^{*}B_{-} ight\}$	α_{a}	P_z	$\sin \theta$	$\sin\theta_{\rm a}$	$\sin^2\theta_b$	$\cos(\phi_{a}+2\phi_{b})$
	$-3/\sqrt{2}$	$Im\{A_{+}^{*}B_{+}\} + Im\{A_{-}^{*}B_{-}\}$		Pz	$\sin \theta$		$\sin 2\theta_b$	$\sin\phi_b$
	$+3/\sqrt{2}$	$Im\{A_{+}^{*}B_{-}\} - Im\{A_{-}^{*}B_{+}\}$	α_{a}	P_z	$\cos \theta$	$\sin \theta_a$	$\sin 2\theta_b$	$\sin(\phi_a + \phi_b)$
	$-3/\sqrt{2}$	$\operatorname{Im}\left\{A_{+}^{*}B_{+}\right\} - \operatorname{Im}\left\{A_{-}^{*}B_{-}\right\}$	α_{a}	P_z	$\sin\theta$	$\cos\theta_{a}$	$\sin 2\theta_b$	$\sin \phi_b$
	-6	$\operatorname{Im}\left\{A_{+}^{*}A_{-}\right\}$	α_{a}	P_z	$\sin\theta$	$\sin\theta_{a}$	$\cos^2\theta_b$	$\sin \phi_{s}$
	+3	$\operatorname{Im}\left\{B_{+}^{*}B_{-} ight\}$	α_{a}	P_z	$\sin \theta$	$\sin\theta_{\rm a}$	$\sin^2\theta_b$	$\sin(\phi_a+2\phi_b)$
	$+3/\sqrt{2}$	$\mathrm{Im} \Big\{ A_+^* B \Big\} + \mathrm{Im} \Big\{ A^* B_+ \Big\}$	α_{a}			$\sin\theta_{\rm a}$	$\sin 2\theta_b$	$\sin(\phi_{a}+\phi_{b})$

Spinful case: resolving ambiguities

e.g. for $\frac{1}{2} \rightarrow \frac{1}{2} \ 1 \rightarrow \frac{1}{2} \ 0 \ 0 \ 0$			like	$\Lambda_b \rightarrow N^* ho \rightarrow p \pi \pi \pi$			
				$\Lambda_b ightarrow$	$\cdot \wedge \phi$ –	$\rightarrow p\pi K$	K
+3	$ A_{+} ^{2} + A_{-} ^{2}$	\nearrow				$\cos^2 \theta_b$	
+3/2	$ B_{+} ^{2} + B_{-} ^{2}$					$\sin^2 \theta_b$	
+3	$ A_{+} ^{2} - A_{-} ^{2}$	α_a			$\cos\theta_{\rm a}$	$\cos^2 \theta_b$	
+3/2	$ B_{+} ^{2} - B_{-} ^{2}$	α_a			$\cos \theta_a$	$\sin^2 \theta_b$	
$+3/\sqrt{2}$	$\operatorname{Re}\left\{A_{+}^{*}B_{-}\right\}-\operatorname{Re}\left\{A_{-}^{*}B_{+}\right\}$	α_a			$\sin \theta_a$	$\sin 2\theta_b$	$\cos(\phi_a + \phi_b)$
+3			Pz	$\cos \theta$		$\cos^2 \theta_b$	
-3/2	$\rightarrow \sin \delta \sin \varphi$		Pz	$\cos\theta$		$\sin^2 \theta_b$	
$+3/\sqrt{2}$	$Re\{A_+^*B_+\}-Re\{A^*B\}$		P_z	$\sin\theta$		$\sin 2\theta_b$	$\cos \phi_b$
+3	$ A_{+} ^{2} + A_{-} ^{2}$	α_a	Pz	$\cos\theta$	$\cos\theta_{\rm a}$	$\cos^2\theta_b$	
-3/2	$ B_{+} ^{2} + B_{-} ^{2}$	α_a	P_z	$\cos \theta$	$\cos\theta_{\rm a}$	$\sin^2 \theta_b$	
$+3/\sqrt{2}$	$Re\big\{A_+^*B\big\} + Re\big\{A^*B_+\big\}$	α_a	P_z	$\cos \theta$	$\sin\theta_{a}$	$\sin 2\theta_b$	$\cos(\phi_a + \phi_b)$
$+3/\sqrt{2}$	$Re\big\{A_+^*B_+\big\} + Re\big\{A^*B\big\}$	α_a	P_z	$\sin\theta$	$\cos\theta_{\rm a}$	$\sin 2\theta_b$	$\cos \phi_b$
-6	$\left(\begin{array}{c} Re\left\{ A_{+}^{*}A_{-} \right\} \right)$	α_a	P_z	$\sin\theta$	$\sin \theta_a$	$\cos^2\theta_b$	$\cos\phi_{a}$
+3	$\operatorname{Re}\left\{B_{+}^{*}B_{-}\right\}$	y,	P_z	$\sin\theta$	$\sin\theta_{s}$	$\sin^2\theta_b$	$\cos(\phi_{a}+2\phi_{b})$
$-3/\sqrt{2}$	$Im\{A_{+}^{*}B_{+}\} + Im\{A_{-}^{*}B_{-}\}$	$\overline{)}$	Pz	$\sin \theta$		$\sin 2\theta_b$	$\sin \phi_b$
$+3/\sqrt{2}$	$\operatorname{Im} \{A_{+}^{*}B_{-}\} - \operatorname{Im} \{A_{-}^{*}B_{+}\}$	α_a	Pz	$\cos \theta$	$\sin \theta_a$	$\sin 2\theta_b$	$\sin(\phi_a + \phi_b)$
$-3/\sqrt{2}$	$\operatorname{Im} \rightarrow \operatorname{cos} \delta \operatorname{sin} \varphi'$	α_a	Pz	$\sin\theta$	$\cos \theta_a$	$\sin 2\theta_b$	$\sin \phi_b$
-6	$Im\{A_{+}^{*}A_{-}\}$	α_a	Pz	$\sin \theta$	$\sin \theta_a$	$\cos^2 \theta_b$	$\sin \phi_a$
+3	$\operatorname{Im}\left\{B_{+}^{*}B_{-}\right\}$	α_a	P_z	$\sin \theta$	$\sin\theta_{\rm a}$	$\sin^2\theta_b$	$\sin(\phi_{a}+2\phi_{b})$
$+3/\sqrt{2}$	$\ln\{A_{+}^{*}B_{-}\} + \ln\{A_{-}^{*}B_{+}\}$	α _β			$\sin\theta_{a}$	$\sin 2\theta_b$	$\sin(\phi_{a}+\phi_{b})$

11

Spinful case: resolving ambiguities

like $\Lambda_b \rightarrow N^* \rho \rightarrow p \pi \pi \pi$ e.g. for $\frac{1}{2} \rightarrow \frac{1}{2} \ 1 \rightarrow \frac{1}{2} \ 0 \ 0 \ 0$ $\Lambda_b \rightarrow \Lambda \phi \rightarrow p \pi K K$ $|A_{+}|^{2} + |A_{-}|^{2}$ +3 $\cos^2 \theta_h$ $|B_+|^2 + |B_-|^2$ +3/2 $|A_{+}|^{2} - |A_{-}|^{2}$ $\angle \hat{\mathsf{T}}$ -even angular distrib. +3 α_{2} $|B_{+}|^{2} - |B_{-}|^{2}$ +3/2 α_{a} SIII Uh $+3/\sqrt{2}$ Re $\{A_{+}^{*}B_{-}\}$ - Re $\{A_{-}^{*}B_{+}\}$ $\sin \theta_a \quad \sin 2\theta_b \quad \cos(\phi_a + \phi_b)$ α_a +3'Pz $\cos \theta$ $\cos^2 \theta_h$ \rightarrow 'sin δ sin φ ' P_z -3/2 $\cos \theta$ $\sin^2 \theta_h$ $+3/\sqrt{2}$ $\operatorname{Re}\left\{A_{+}^{*}B_{+}\right\} - \operatorname{Re}\left\{A_{-}^{*}B_{-}\right\}$ P_z $\sin \theta$ $\sin 2\theta_b$ $\cos \phi_h$ $|A_{+}|^{2} + |A_{-}|^{2}$ +3 P_z α_a ∠T-odd angular distrib. $|B_{+}|^{2} + |B_{-}|^{2}$ P_z -3/2 α_a $+3/\sqrt{2}$ $Re\{A_{+}^{*}B_{-}\} + Re\{A_{-}^{*}B_{+}\}$ P_z $\sin 2\theta_h$ $\cos(\phi_a + \phi_b)$ α_a $\cos \theta$ $\sin\theta_{a}$ $+3/\sqrt{2}$ $Re\{A_{+}^{*}B_{+}\} + Re\{A_{-}^{*}B_{-}\}$ α_a P_z $\sin \theta$ $\cos\theta_{a}$ $\sin 2\theta_h$ $\cos \phi_h$ -6 $\operatorname{Re} \{ A_{+}^{*} A_{-} \}$ α_a P_z $\sin \theta$ $\sin\theta_a \cos^2\theta_b$ $\cos \phi_{a}$ $\sin \theta_a \quad \sin^2 \theta_b \quad \cos(\phi_a + 2\phi_b)$ +3 $\operatorname{Re} \{ B_{+}^{*} B_{-} \}$ P_z $\sin \theta$ $-3/\sqrt{2}$ $\ln \{A_{+}^{*}B_{+}\} + \ln \{A_{-}^{*}B_{-}\}$ $\sin \theta$ P_z $\sin 2\theta_{h}$ $\sin \phi_h$ $+3/\sqrt{2}$ $Im\{A_{+}^{*}B_{-}\} - Im\{A_{-}^{*}B_{+}\}$ Ρ, α_a $\cos \theta$ $\sin \theta_{2}$ $\sin 2\theta_h$ $\sin(\phi_a + \phi_b)$ $-3/\sqrt{2}$ Im $\rightarrow \cos \delta \sin \varphi'$ Ρ, $\sin \theta$ $\cos \theta_a$ $\sin 2\theta_h$ $\sin \phi_h$ α_a -6 α_a P_z $\sin \theta$ $\sin \theta_{2}$ $\cos^2 \theta_h$ $\sin \phi_a$ $\operatorname{Im}_{A_{+}^{*}A_{-}}$ $\operatorname{Im} \{B_{\perp}^* B_{\perp}\}$ P_z $\sin^2 \theta_b \quad \sin(\phi_a + 2\phi_b)$ +3 α_a $\sin \theta$ $\sin \theta_a$ $+3/\sqrt{2}$ $\ln\{A_{+}^{*}B_{-}\} + \ln\{A_{-}^{*}B_{+}\}$ $\sin \theta_{2}$ $\sin 2\theta_h$ $\sin(\phi_a + \phi_b)$

11

Spinful case: resolving ambiguities

With a resonance structure isolated, the helicity formalism determines which $\angle \hat{T}$ -odd and $\angle \hat{T}$ -even *angular* distributions lead to ' $\cos \delta \sin \varphi$ ' sensitivities in decay amplitudes.

$$\mathcal{A}_{mno}^{jkl} \equiv \int \mathrm{d}\Omega \left(\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\Omega} - \frac{1}{\bar{\Gamma}} \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}\Omega} \right) \operatorname{sign} \left\{ f_j(\cos\theta) f_k(\cos\theta_a) f_l(\cos\theta_b) \sin\left(m\phi_a + n\phi_b + o\frac{\pi}{2}\right) \right\}$$

with $o \in \{0,1\}, \quad j + m + n + o \in 2\mathbb{Z} \to \angle \hat{\Gamma}$ -odd
 $j + m + n + o \in (2\mathbb{Z} + 1) \to \angle \hat{T}$ -even

+ further understanding gained:

- e.g., in strongly-produced $\frac{1}{2} \rightarrow \frac{1}{2} \; 1 \rightarrow \frac{1}{2} \; 0 \; 0 \; 0,$
 - \cdot vanishing 'classic' sin $(\phi_a + \phi_b)$ asymmetry (integrated $a_{CP}^{\hat{T} ext{-odd}})$
 - vanishing asymmetries based on 'special' angles [hep-ph/0602043]

$$\begin{split} \cos \Phi_{a} &= \frac{\cos \theta \cos \phi \sin \phi_{a} + \sin \phi \cos \phi_{a}}{\sqrt{1 - \sin^{2} \phi_{a} \sin^{2} \theta}}, \quad \sin \Phi_{a} &= \frac{\cos \theta \sin \phi \sin \phi_{a} - \cos \phi \cos \phi_{a}}{\sqrt{1 - \sin^{2} \phi_{a} \sin^{2} \theta}}, \\ \cos \Phi_{b} &= \frac{\cos \theta \cos \phi \sin \phi_{b} - \sin \phi \cos \phi_{b}}{\sqrt{1 - \sin^{2} \phi_{b} \sin^{2} \theta}}, \quad \sin \Phi_{b} &= \frac{\cos \theta \sin \phi \sin \phi_{a} + \cos \phi \cos \phi_{b}}{\sqrt{1 - \sin^{2} \phi_{b} \sin^{2} \theta}}. \end{split}$$

measured in $\Lambda_b \to \Lambda \phi \to p \pi K K$ [1603.02870]

Differential distributions are rich of opportunities to search for CP violation.

Genuine \hat{T} -odd distributions allow to probe CP violation with ' $\cos \delta \sin \varphi$ ' sensitivity.

In spinless decays, systematic search procedures are free of modelling limitations.

In spinful decays, the genuine $\hat{\mathsf{T}}\text{-}\mathsf{odd}$ distributions do not seem accessible.

But the helicity formalism indicates which *angular* distributions lead to ' $\cos \delta \sin \varphi$ ' sensitivities to decay amplitude phases.