Lattice prospects for CP violation and multi-hadron decays

Maxwell T. Hansen

Institut für Kernphysik and Helmholtz-Institut Mainz Johannes Gutenberg Universität

Mainz, Germany

October 13th, 2016

Introduction

CP violating processes are a promising tool in searching for new physics beyond the Standard Model (BSM)

This requires understanding the SM prediction for the CP violating process

experiment = (SM) (perturbative QCD) (non-perturbative QCD) + (BSM) (non-perturbative QCD)

Lattice QCD (LQCD) is a powerful tool for extracting non-perturbative QCD predictions

Here I focus on prospects for multi-hadron decays

$$D \to \pi \pi, \ K \overline{K}$$
 $B \to K^* (\to K \pi) \ell \ell$ $\Lambda_b \to J/\psi \, p \, \pi^-$

In LQCD we evaluate the Feynman path-integral numerically

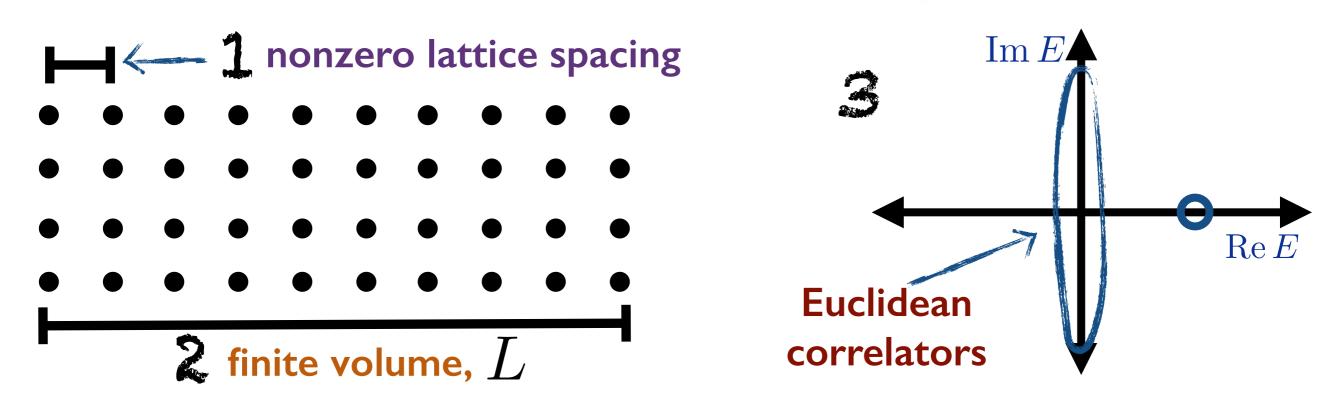
observable =
$$\int \mathcal{D}\phi \ e^{iS}$$
 [quantum fields of the observable]

In LQCD we evaluate the Feynman path-integral numerically

observable =
$$\int \prod_i^N d\phi_i \ e^{-S} \begin{bmatrix} \text{quantum fields} \\ \text{of the observable} \end{bmatrix}$$

To do so we make four modifications

In LQCD we evaluate the Feynman path-integral numerically

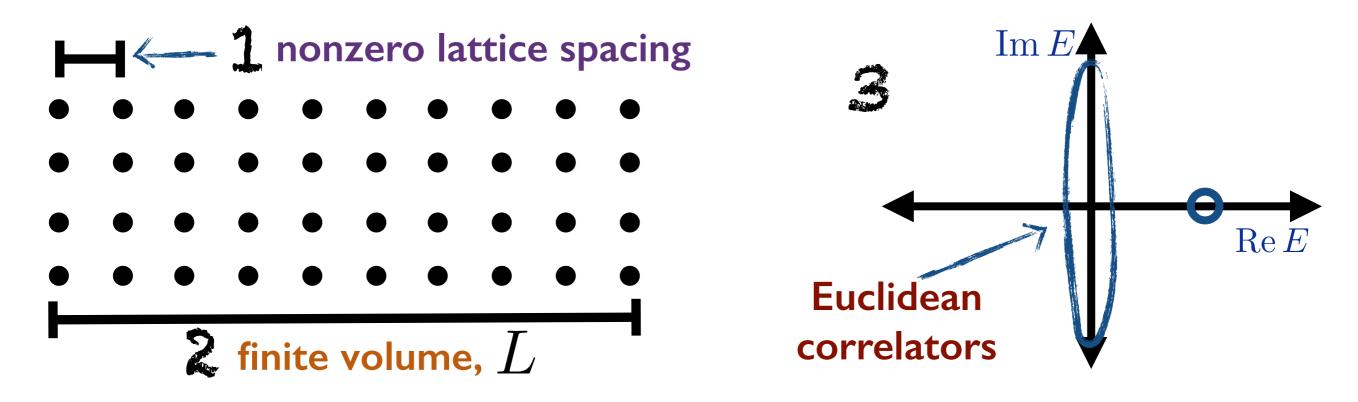

observable =
$$\int \prod_i^N d\phi_i \ e^{-S} \begin{bmatrix} \text{quantum fields} \\ \text{of the observable} \end{bmatrix}$$

To do so we make four modifications

In LQCD we evaluate the Feynman path-integral numerically

observable =
$$\int \prod_{i}^{N} d\phi_{i} \ e^{-S} \begin{bmatrix} \text{quantum fields} \\ \text{of the observable} \end{bmatrix}$$

To do so we make four modifications



4 unphysical quark content $M_{\pi, \text{lattice}} > M_{\pi, \text{our universe}}$

Calculations at the physical pion mass do now exist

In LQCD we evaluate the Feynman path-integral numerically

To do so we make four modifications

4 unphysical quark content $M_{\pi, \text{lattice}} > M_{\pi, \text{our universe}}$

Calculations at the physical pion mass do now exist

Two basic approaches to handle these modifications

Perform multiple calculations and extrapolate

Use theoretical methods to understand the modification

Two basic approaches to handle these modifications

Perform multiple calculations and extrapolate

Use theoretical methods to understand the modification

nonzero lattice spacing unphysical quark content

Modern calculations often have reliable chiralcontinuum extrapolations (see e.g. FLAG)

Two basic approaches to handle these modifications

Perform multiple calculations and extrapolate

Use theoretical methods to understand the modification

nonzero lattice spacing unphysical quark content

Euclidean correlators

Modern calculations often have reliable chiralcontinuum extrapolations (see e.g. FLAG)

The effect of Euclidean correlators is observable dependent

Two basic approaches to handle these modifications

Perform multiple calculations and extrapolate

Use theoretical methods to understand the modification

nonzero lattice spacing unphysical quark content

finite volume

Euclidean correlators

Modern calculations often have reliable chiralcontinuum extrapolations (see e.g. FLAG)

The effect of Euclidean correlators is observable dependent

The role of finite volume is also observable dependent:

For decay constants and form factors one should extrapolate to infinite-volume...

Two basic approaches to handle these modifications

Perform multiple calculations and extrapolate

Use theoretical methods to understand the modification

nonzero lattice spacing unphysical quark content

finite volume

Euclidean correlators

Modern calculations often have reliable chiral- The effect of Euclidean correlators continuum extrapolations (see e.g. FLAG)

is observable dependent

The role of finite volume is also observable dependent:

For decay constants and form factors one should extrapolate to infinite-volume...

To extract multi-hadron decay and scattering amplitudes we do not take the infinite-volume limit

$$D \to \pi\pi, \ K\overline{K}$$

$$B \to K^* (\to K\pi) \ell \ell$$

$$\Lambda_b \to J/\psi \, p \, \pi^-$$

This is the focus of this talk!

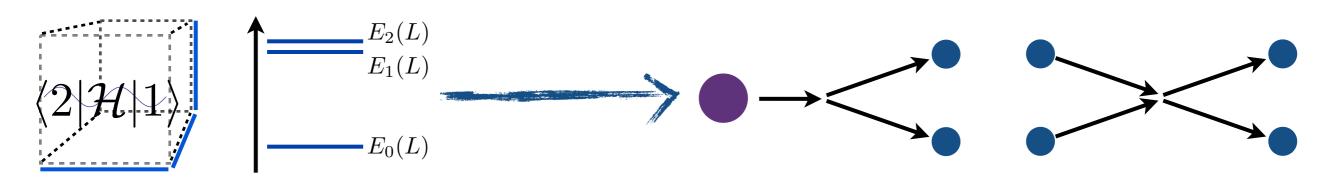
Multi-hadron processes from LQCD...

In a LQCD calculation it is possible to access

$$H_{\text{QCD}}|n, \text{``}\pi\pi\text{''}, L\rangle = |n, \text{``}\pi\pi\text{''}, L\rangle \underline{E_n(L)}$$

 $\langle n, \text{``}\pi\pi\text{''}, L|\mathcal{H}_W|\text{``}D\text{''}, L\rangle$

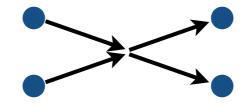
finite-volume energies and matrix elements (labels in quotes indicate quantum numbers)


Multi-hadron processes from LQCD...

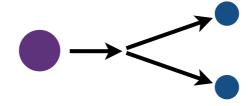
In a LQCD calculation it is possible to access

$$H_{\text{QCD}}|n, \text{``}\pi\pi\text{''}, L\rangle = |n, \text{``}\pi\pi\text{''}, L\rangle \underline{E_n(L)}$$

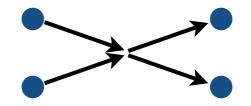
 $\langle n, \text{``}\pi\pi\text{''}, L|\mathcal{H}_W|\text{``}D\text{''}, L\rangle$


finite-volume energies and matrix elements (labels in quotes indicate quantum numbers)

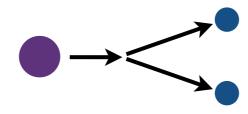
Lüscher (1991) + Lellouch and Lüscher (2001) derived relations between such finite-volume quantities and infinite-volume experimental observables


Neglect contributions scaling as $e^{-M_{\pi}L}$.

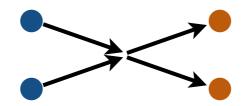
$$\pi\pi \to \pi\pi$$
, $\sqrt{s} < 4M_{\pi}$ ($\mathbf{P} \neq 0$ in finite-volume frame)*


Lüscher (1986, 1991) Rummukainen and Gottlieb (1995)*

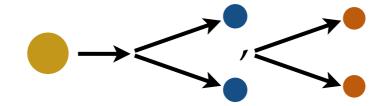
$$K \to \pi\pi$$
 (relies on $M_K < 4M_\pi$) ($\mathbf{P} \neq 0$ in finite-volume frame)*


Lellouch and Lüscher (2001) Kim, Sachrajda and Sharpe (2005)*, Christ, Kim and Yamazaki (2005)*

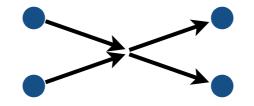
$$\pi\pi \to \pi\pi$$
, $\sqrt{s} < 4M_\pi$ ($\mathbf{P} \neq 0$ in finite-volume frame)*


Lüscher (1986, 1991) Rummukainen and Gottlieb (1995)*

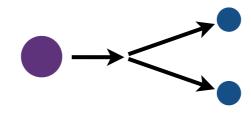
$$K \to \pi\pi$$
 (relies on $M_K < 4M_\pi$) ($\mathbf{P} \neq 0$ in finite-volume frame)*


Lellouch and Lüscher (2001) Kim, Sachrajda and Sharpe (2005)*, Christ, Kim and Yamazaki (2005)*

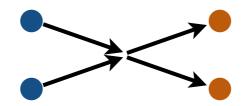
$$\pi\pi \to K\overline{K}$$
, $\sqrt{s} < 4M_{\pi}$ (not possible for physical masses)


Bernard et al. (2011), Fu (2012), Briceño and Davoudi (2012)

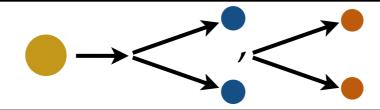
$$D
ightarrow \pi\pi,\, K\overline{K}$$
 (ignores four-particle states)


MTH and Sharpe (2012)

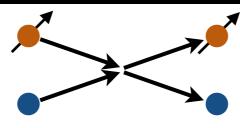
$$\pi\pi \to \pi\pi$$
, $\sqrt{s} < 4M_{\pi}$ ($\mathbf{P} \neq 0$ in finite-volume frame)*


Lüscher (1986, 1991) Rummukainen and Gottlieb (1995)*

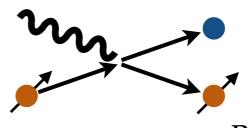
$$K \to \pi\pi$$
 (relies on $M_K < 4M_\pi$) (P $\neq 0$ in finite-volume frame)*


Lellouch and Lüscher (2001) Kim, Sachrajda and Sharpe (2005)*, Christ, Kim and Yamazaki (2005)*

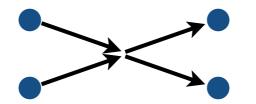
$$\pi\pi \to K\overline{K}$$
, $\sqrt{s} < 4M_{\pi}$ (not possible for physical masses)


Bernard et al. (2011), Fu (2012), Briceño and Davoudi (2012)

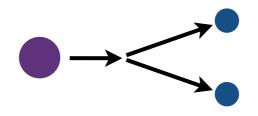
$$D
ightarrow \pi\pi,\, K\overline{K}$$
 (ignores four-particle states)


MTH and Sharpe (2012)

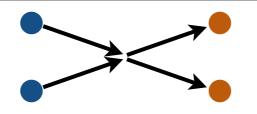
$$NN
ightarrow NN$$
, $N\pi
ightarrow N\pi$ (energies below three-particle production)


Detmold and Savage (2004) Göckeler et al. (2012) Briceño (2014)

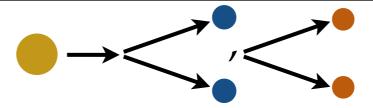
$$\gamma^* o \pi\pi$$
, $\pi\gamma^* o \pi\pi$, $N\gamma^* o N\pi$, $N\gamma^* o N\pi$ $B o K^*(o K\pi)\ell\ell$ (energies below three-particle production)


Meyer (2011),
Bernard et al. (2012),
A. Agadjanov et al. (2014),
Briceño, MTH and Walker-Loud (2014)
Briceño and MTH (2015)

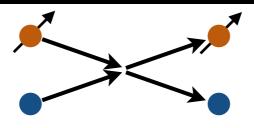
elastic scattering of identical scalars


Lüscher (1986, 1991) Rummukainen and Gottlieb (1995)

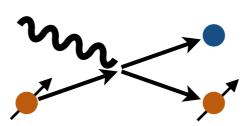
decay into identical scalars (no other open decay channels)


Lellouch and Lüscher (2001) Kim, Sachrajda and Sharpe (2005), Christ, Kim and Yamazaki (2005)

non-identical scalars, multiple coupled channels*


Bernard et al. (2011), Fu (2012), Briceño and Davoudi (2012)

decay into multiple, coupled two-particle channels*


MTH and Sharpe (2012)

scattering of particles with intrinsic spin*

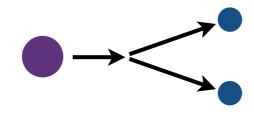
Detmold and Savage (2004) Göckeler et al. (2012) Briceño (2014)

particle production mediated by a generic local current*

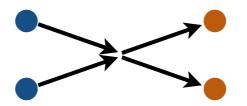

Meyer (2011), Bernard et al. (2012), A. Agadjanov et al. (2014),

Briceño, MTH and Walker-Loud (2014)

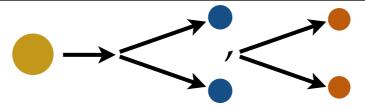
*(assumes no three or four-particle channels open)


Briceño and MTH (2015)

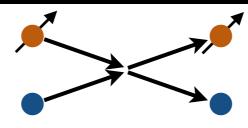
elastic scattering of identical scalars


Lüscher (1986, 1991) Rummukainen and Gottlieb (1995)

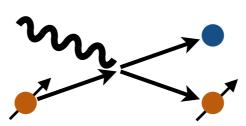
decay into identical scalars (no other open decay channels)


Lellouch and Lüscher (2001) Kim, Sachrajda and Sharpe (2005), Christ, Kim and Yamazaki (2005)

non-identical scalars, multiple coupled channels*


Bernard et al. (2011), Fu (2012), Briceño and Davoudi (2012)

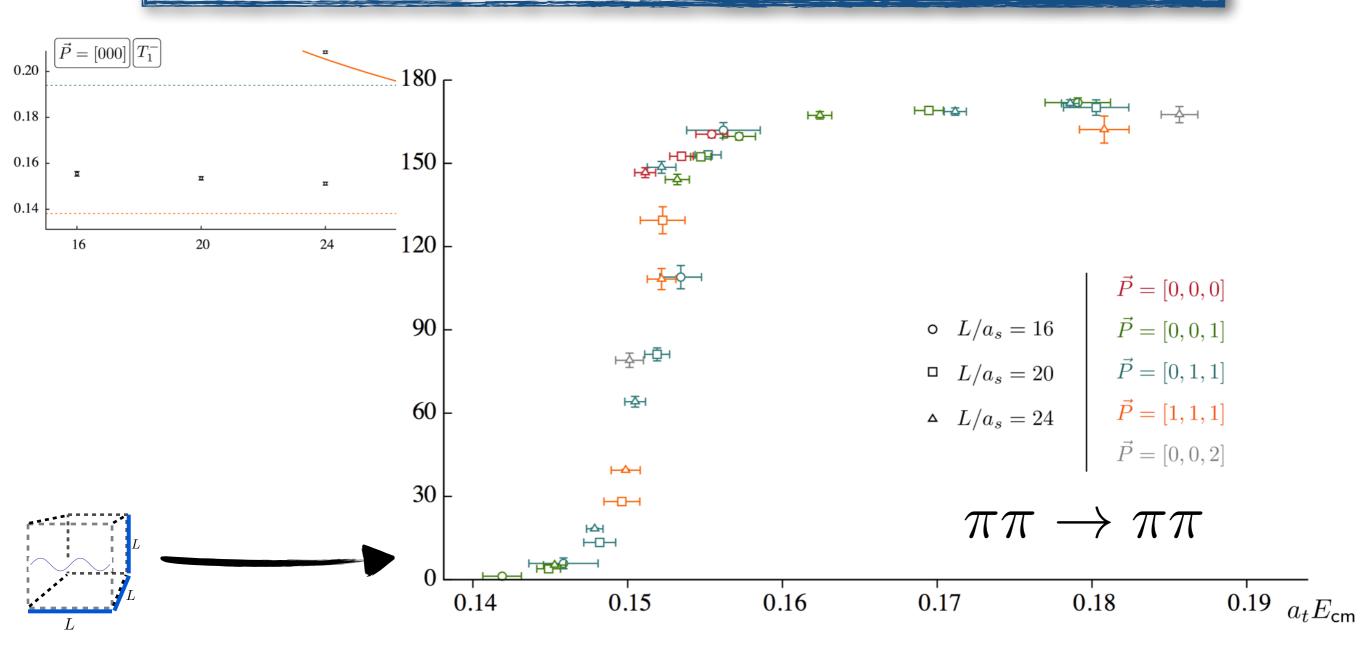
decay into multiple, coupled two-particle channels*


MTH and Sharpe (2012)

scattering of particles with intrinsic spin*

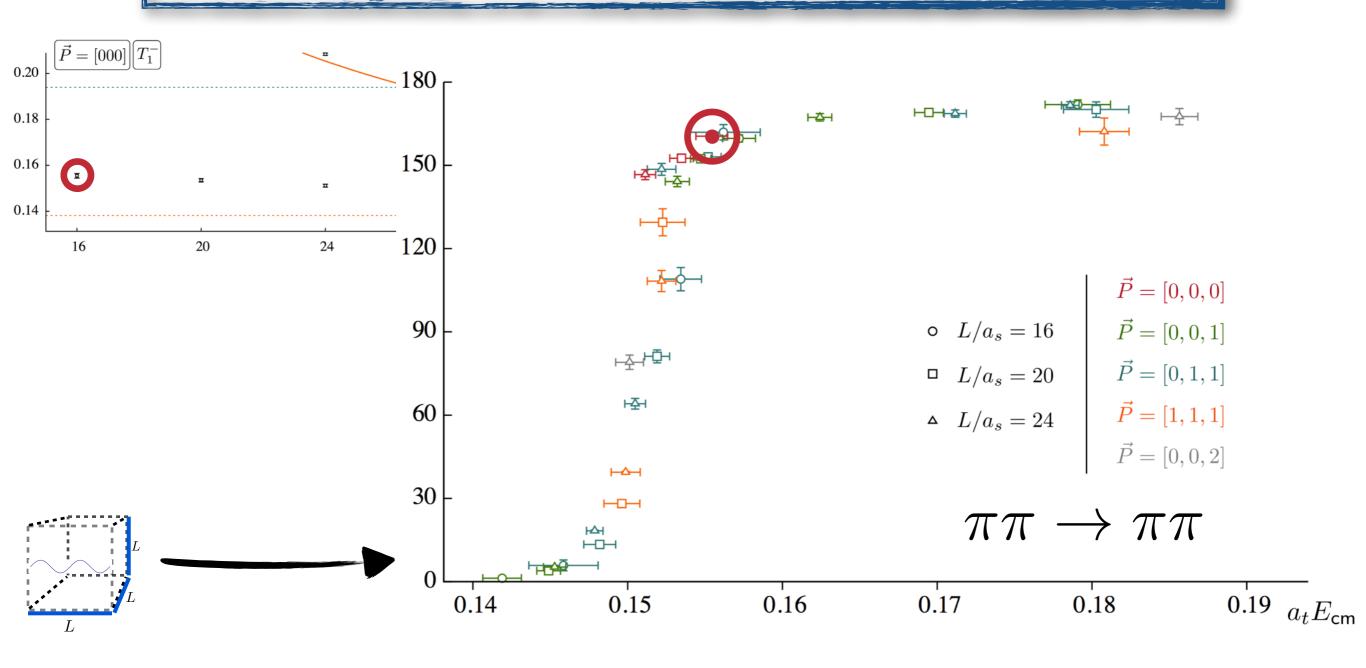
Detmold and Savage (2004) Göckeler et al. (2012) Briceño (2014)

particle production mediated by a generic local current*

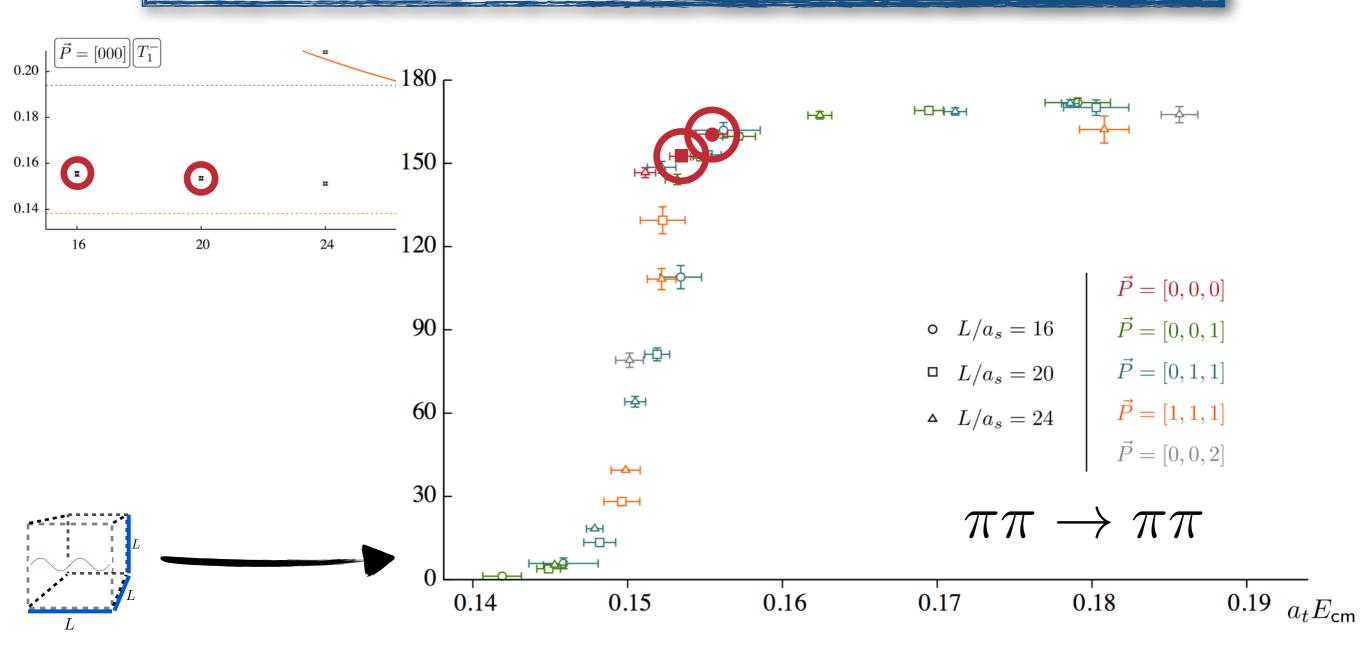

Meyer (2011), Bernard et al. (2012), A. Agadjanov et al. (2014),

Briceño, MTH and Walker-Loud (2014)

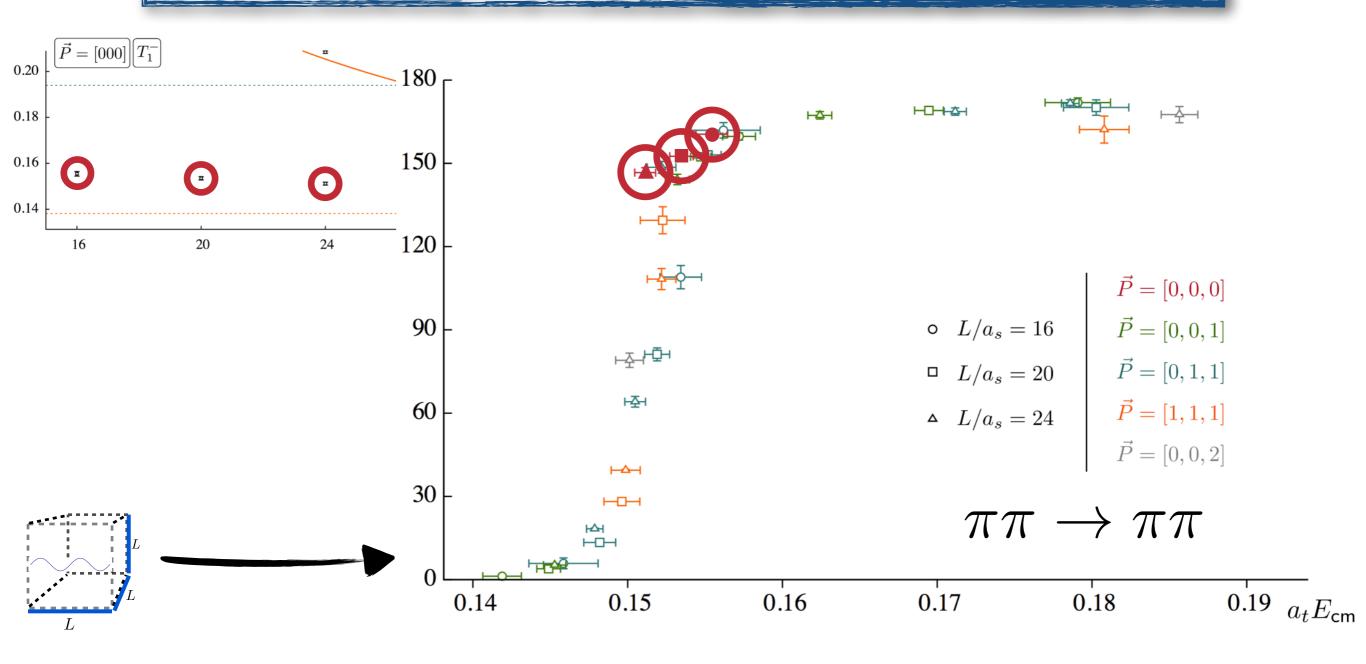
*(assumes no three or four-particle channels open)


Briceño and MTH (2015)

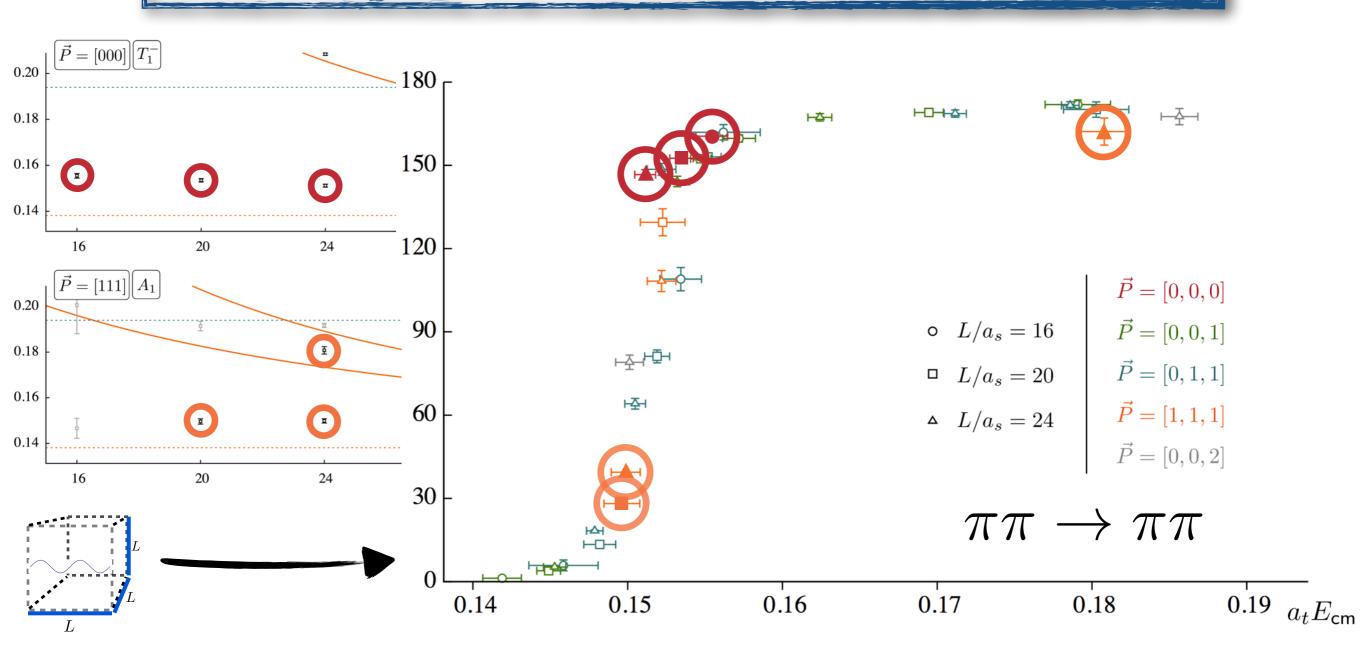
$$\cot \delta_{\ell=1}(E_n^*) + \cot \phi(E_n,\vec{P},L) = 0$$
 scattering phase known geometric function


Dudek, Edwards, Thomas in Phys. Rev. D87 (2013) 034505

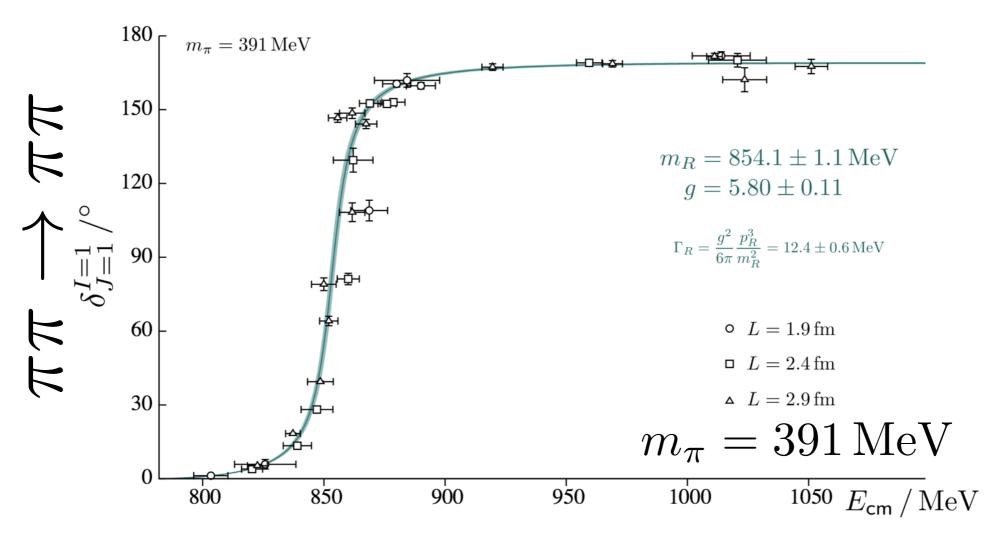
$$\cot \delta_{\ell=1}(E_n^*) + \cot \phi(E_n,\vec{P},L) = 0$$
 scattering phase known geometric function


Dudek, Edwards, Thomas in Phys. Rev. D87 (2013) 034505

$$\cot \delta_{\ell=1}(E_n^*) + \cot \phi(E_n,\vec{P},L) = 0$$
 scattering phase known geometric function


Dudek, Edwards, Thomas in Phys. Rev. D87 (2013) 034505

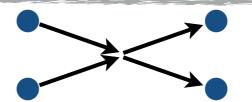
$$\cot \delta_{\ell=1}(E_n^*) + \cot \phi(E_n,\vec{P},L) = 0$$
 scattering phase known geometric function



Dudek, Edwards, Thomas in Phys. Rev. D87 (2013) 034505

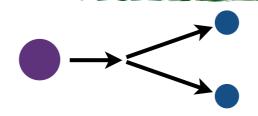
$$\cot \delta_{\ell=1}(E_n^*) + \cot \phi(E_n,\vec{P},L) = 0$$
 scattering phase known geometric function

Dudek, Edwards, Thomas in Phys. Rev. D87 (2013) 034505


Dudek, Edwards, Thomas in Phys. Rev. D87 (2013) 034505

$$\cot \delta_{\ell=1}(E_n^*) + \cot \phi(E_n, \vec{P}, L) = 0$$
Caveats

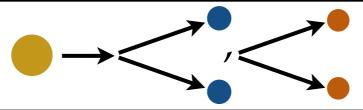
Neglects contributions scaling as $e^{-M_\pi L}$


Full result is a determinant of matrices in the partial-wave basis Tower of partial waves contribute to each given finite-volume energy... Must truncate to solve... can estimate uncertainty by varying truncation

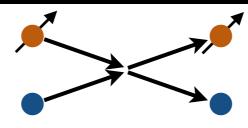
elastic scattering of identical scalars

Lüscher (1986, 1991) Rummukainen and Gottlieb (1995)

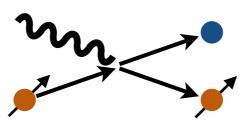
decay into identical scalars (no other open decay channels)


Lellouch and Lüscher (2001) Kim, Sachrajda and Sharpe (2005), Christ, Kim and Yamazaki (2005)

non-identical scalars, multiple coupled channels*


Bernard et al. (2011), Fu (2012), Briceño and Davoudi (2012)

decay into multiple, coupled two-particle channels*


MTH and Sharpe (2012)

scattering of particles with intrinsic spin*

Detmold and Savage (2004) Göckeler et al. (2012) Briceño (2014)

particle production mediated by a generic local current*

Meyer (2011), Bernard et al. (2012), A. Agadjanov et al. (2014),

Briceño, MTH and Walker-Loud (2014)

Briceño and MTH (2015)

*(assumes no three or four-particle channels open)

$K \to \pi\pi$ from LQCD $\longrightarrow \subset$

$$|\langle \pi \pi, L | \widetilde{\mathcal{H}}_W | K, L \rangle|^2 = \mathcal{B}[\delta_{\pi \pi}] |\langle \pi \pi, \text{out} | \mathcal{H}_W | K \rangle|^2$$

$$\mathcal{B}[\delta_{\pi\pi}] = \frac{p}{32\pi M_K^2} \left[\frac{\partial}{\partial E} \left(\phi + \delta_{\pi\pi} \right) \right]_{E=M_K}^{-1}$$

Lellouch and Lüscher (2001)

$$|\langle \pi \pi, L | \widetilde{\mathcal{H}}_W | K, L \rangle|^2 = \mathcal{B}[\delta_{\pi \pi}] \ |\langle \pi \pi, \text{out} | \mathcal{H}_W | K \rangle|^2$$

$$\mathcal{B}[\delta_{\pi \pi}] = \frac{p}{32\pi M_K^2} \left[\frac{\partial}{\partial E} \left(\phi + \delta_{\pi \pi} \right) \right]_{E=M_K}^{-1}$$
Lellouch and Lüscher (2001)

To convert finite-volume LQCD matrix elements to physically observable decay amplitudes one uses the Lellouch-Lüscher conversion factor $\mathcal{B}[\delta_{\pi\pi}]$.

$$|\langle \pi \pi, L | \widetilde{\mathcal{H}}_W | K, L \rangle|^2 = \mathcal{B}[\delta_{\pi \pi}] \ |\langle \pi \pi, \text{out} | \mathcal{H}_W | K \rangle|^2$$

$$\mathcal{B}[\delta_{\pi \pi}] = \frac{p}{32\pi M_K^2} \left[\frac{\partial}{\partial E} \left(\phi + \delta_{\pi \pi} \right) \right]_{E=M_K}^{-1}$$
Lellouch and Lüscher (2001)

To convert finite-volume LQCD matrix elements to physically observable decay amplitudes one uses the Lellouch-Lüscher conversion factor $\mathcal{B}[\delta_{\pi\pi}]$.

- (1). Determine finite-volume energies
- (2). Use these to determine the (derivative of the) scattering phase
- (3). Calculate the finite-volume matrix element
- (4). Combine Lellouch-Lüscher factor and finite-volume matrix element to deduce decay rate

A full error budget LQCD calculation of this decay is being pursued by the RBC/UKQCD collaboration

(I=2:1502.00263, I=0: 1505.07863)

A full error budget LQCD calculation of this decay is being pursued by the RBC/UKQCD collaboration

(I=2:1502.00263, I=0: 1505.07863)

Isospin-two decay

Find significant cancellation between two dominant contributions (insight on $\Delta I=1/2\,$ rule)

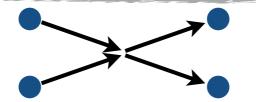
A full error budget LQCD calculation of this decay is being pursued by the RBC/UKQCD collaboration

(I=2:1502.00263, I=0: 1505.07863)

Isospin-two decay

Find significant cancellation between two dominant contributions (insight on $\Delta I=1/2\,$ rule)

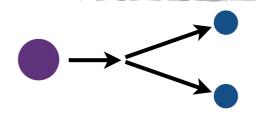
More difficult isospin-zero decay


$$Re[A_0] = 4.66(1.00)(1.26) \times 10^{-7} \text{ GeV}$$

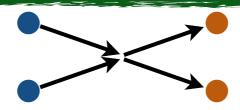
 $Re[A_0]_{expt} = 3.3201(18) \times 10^{-7} \text{ GeV}$

Direct CP violating ratio

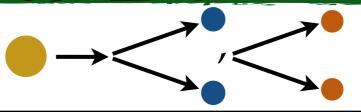
$$Im[A_0] = -1.90(1.23)(1.08) \times 10^{-11} \,GeV \longrightarrow Re[\varepsilon'/\varepsilon] = 1.38(5.15)(4.59) \times 10^{-4}$$
$$Re[\varepsilon'/\varepsilon]_{expt} = 16.6(2.3) \times 10^{-4}$$


Only LQCD study of a multi-hadron decay so far

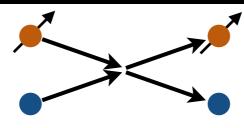
elastic scattering of identical scalars


Lüscher (1986, 1991) Rummukainen and Gottlieb (1995)

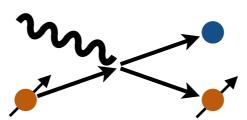
decay into identical scalars (no other open decay channels)


Lellouch and Lüscher (2001) Kim, Sachrajda and Sharpe (2005), Christ, Kim and Yamazaki (2005)

non-identical scalars, multiple coupled channels*


Bernard et al. (2011), Fu (2012), Briceño and Davoudi (2012)

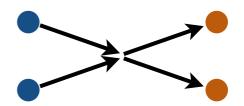
decay into multiple, coupled two-particle channels*


MTH and Sharpe (2012)

scattering of particles with intrinsic spin*

Detmold and Savage (2004) Göckeler et al. (2012) Briceño (2014)

particle production mediated by a generic local current*

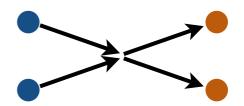

Meyer (2011), Bernard et al. (2012), A. Agadjanov et al. (2014),

Briceño, MTH and Walker-Loud (2014)

Briceño and MTH (2015)

*(assumes no three or four-particle channels open)

Multiple two-particle channels



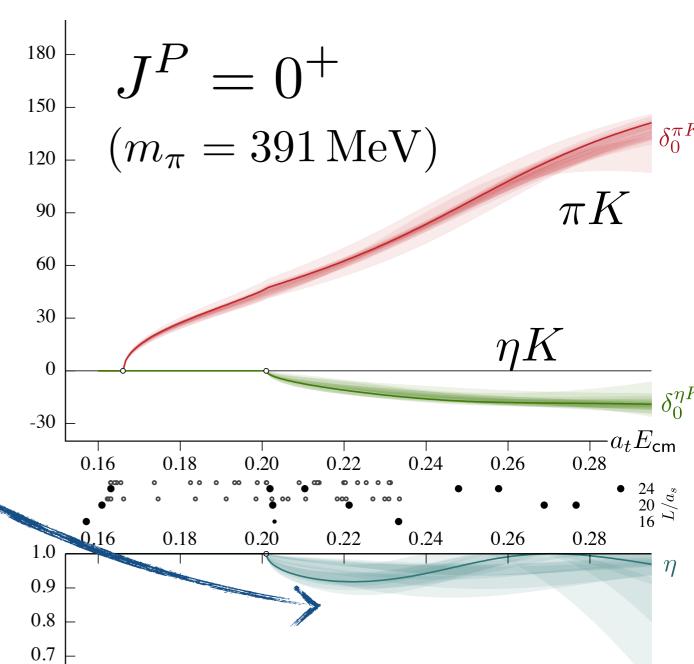
Must now include

Must now include a channel index
$$\begin{vmatrix} \mathcal{M}_{a \to a} & \mathcal{M}_{a \to b} \\ \mathcal{M}_{b \to a} & \mathcal{M}_{b \to b} \end{vmatrix}^{-1} + \begin{pmatrix} F_a & 0 \\ 0 & F_b \end{pmatrix} = 0$$

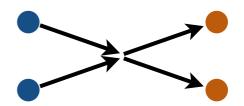
MTH and Sharpe/Briceño and Davoudi

Multiple two-particle channels

Must now include a channel index


MTH and Sharpe/Briceño and Davoudi

$$\det \begin{bmatrix} \begin{pmatrix} \mathcal{M}_{a \to a} & \mathcal{M}_{a \to b} \\ \mathcal{M}_{b \to a} & \mathcal{M}_{b \to b} \end{pmatrix}^{-1} + \begin{pmatrix} F_a & 0 \\ 0 & F_b \end{pmatrix} = 0$$

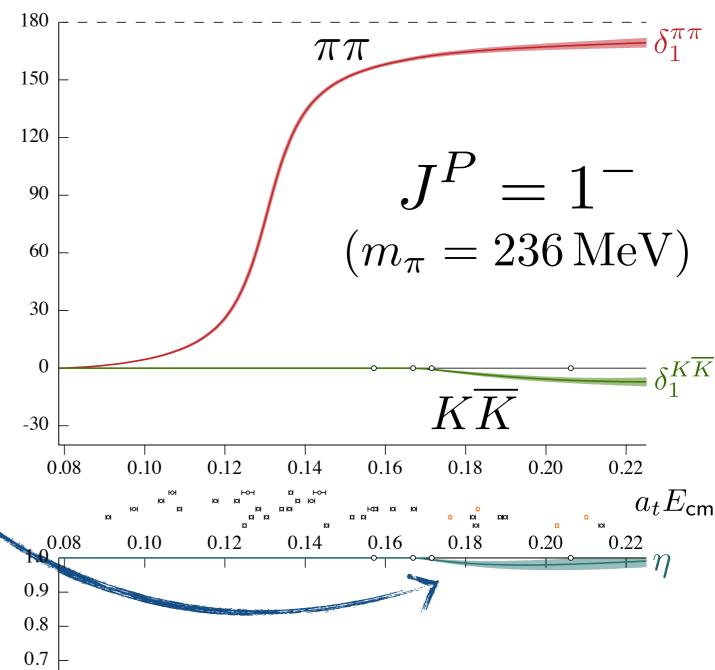

First used in HadSpec study of $\pi K, \ \eta K$

 $\mathcal{M}(\pi K \to \eta K) \sim \sqrt{1 - \eta^2}$

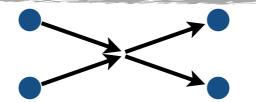
Wilson, Dudek, Edwards, Thomas, Phys. Rev. D 91, 054008 (2015) arXiv: 1411.2004

Multiple two-particle channels

Must now include a channel index

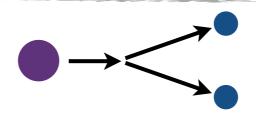

MTH and Sharpe/Briceño and Davoudi

$$\det \begin{bmatrix} \begin{pmatrix} \mathcal{M}_{a \to a} & \mathcal{M}_{a \to b} \\ \mathcal{M}_{b \to a} & \mathcal{M}_{b \to b} \end{pmatrix}^{-1} + \begin{pmatrix} F_a & 0 \\ 0 & F_b \end{pmatrix} = 0$$

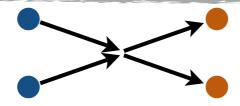

As well as JLab rho study with $\pi\pi$, KK

 $\mathcal{M}(\pi\pi \to K\overline{K}) \sim \sqrt{1-\eta^2}$

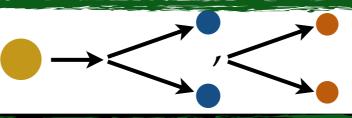
Wilson, Briceño, Dudek, Edwards, Thomas, Phys. Rev. D 92, 094502 (2015) arXiv:1507:02599



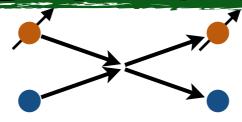
elastic scattering of identical scalars


Lüscher (1986, 1991) Rummukainen and Gottlieb (1995)

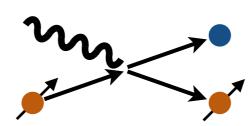
decay into identical scalars (no other open decay channels)


Lellouch and Lüscher (2001) Kim, Sachrajda and Sharpe (2005), Christ, Kim and Yamazaki (2005)

non-identical scalars, multiple coupled channels*


Bernard et al. (2011), Fu (2012), Briceño and Davoudi (2012)

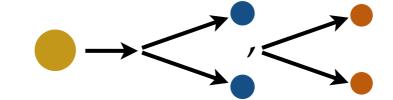
decay into multiple, coupled two-particle channels*


MTH and Sharpe (2012)

scattering of particles with intrinsic spin*

Detmold and Savage (2004) Göckeler et al. (2012) Briceño (2014)

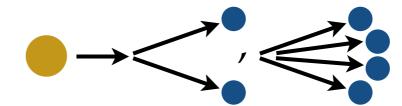
particle production mediated by a generic local current*

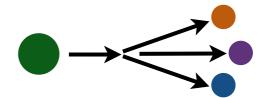

Meyer (2011), Bernard et al. (2012), A. Agadjanov et al. (2014),

Briceño, MTH and Walker-Loud (2014)

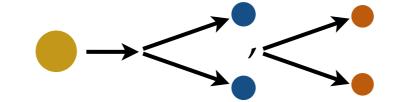
Briceño and MTH (2015)

*(assumes no three or four-particle channels open)

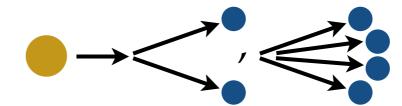

$$D
ightarrow \pi\pi,\, K\overline{K}$$
 (ignores four-particle states)

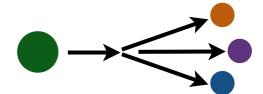

MTH and Sharpe (2012)

LQCD formalism has not yet been developed for


$$D \to \pi\pi, \ K\overline{K}, \ \pi\pi\pi\pi$$

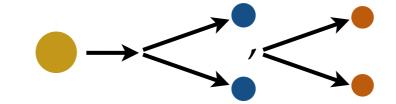
$$B^{\pm} \to K^{\pm}K^{+}K^{-}, \ \Lambda_b \to J/\psi \, p \, \pi^{-}$$


$$D \to \pi\pi,\, K\overline{K}$$
 (ignores four-particle states)


MTH and Sharpe (2012)

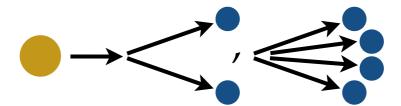
LQCD formalism has not yet been developed for

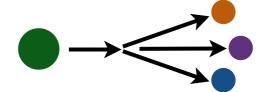
$$D \to \pi\pi, \ K\overline{K}, \ \pi\pi\pi\pi$$


$$B^{\pm} \to K^{\pm} K^{+} K^{-}, \ \Lambda_{b} \to J/\psi \, p \, \pi^{-}$$

Three-particle scattering formalism has been developed for pions and extensions to all systems are underway

(MTH and Sharpe, arXiv:1408.5933 and 1504.04248)


$$D
ightarrow \pi\pi,\, K\overline{K}$$
 (ignores four-particle states)


MTH and Sharpe (2012)

LQCD formalism has not yet been developed for

$$D \to \pi\pi, \ K\overline{K}, \ \pi\pi\pi\pi$$

$$B^{\pm} \to K^{\pm}K^{+}K^{-}, \ \Lambda_b \to J/\psi \, p \, \pi^{-}$$

Three-particle scattering formalism has been developed for pions and extensions to all systems are underway

(MTH and Sharpe, arXiv:1408.5933 and 1504.04248)

Even if we just want two-particle decays...

These can only be studied rigorously in LQCD by including the effects of all open thresholds

This is the central limitation of all current formalism

The finite-volume mixes all open channels

If we ignore four (and higher) particle states then

$$|\langle n, L | \widetilde{\mathcal{H}}_W | D, L \rangle| = |b_{\pi\pi} \langle \pi\pi, \text{out} | \mathcal{H}_W | D \rangle + b_{K\overline{K}} \langle K\overline{K}, \text{out} | \mathcal{H}_W | D \rangle + \cdots$$
MTH and Sharpe, 1204.0826

Like the original Lellouch-Lüscher factor $b_{\pi\pi}$ and $b_{K\overline{K}}$ depend on derivatives of QCD scattering amplitudes

If we ignore four (and higher) particle states then

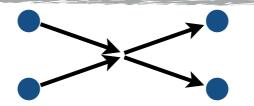
$$|\langle n, L | \widetilde{\mathcal{H}}_W | D, L \rangle| = |b_{\pi\pi} \langle \pi\pi, \text{out} | \mathcal{H}_W | D \rangle + b_{K\overline{K}} \langle K\overline{K}, \text{out} | \mathcal{H}_W | D \rangle + \cdots |$$
MTH and Sharpe, 1204.0826

Like the original Lellouch-Lüscher factor $b_{\pi\pi}$ and $b_{K\overline{K}}$ depend on derivatives of QCD scattering amplitudes

- (1). Determine finite-volume energies
- (2). Use these to determine the (derivatives of) all scattering parameters in the coupled-channel sector
- (3). Calculate multiple finite-volume matrix elements
- (4). Deduce multiple, linearly independent relations between finite-and infinite-volume matrix elements
- (5). Solve for the infinite-volume decay amplitudes

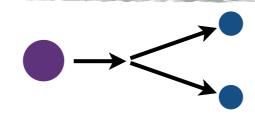
If we ignore four (and higher) particle states then

$$|\langle n, L | \widetilde{\mathcal{H}}_W | D, L \rangle| = |b_{\pi\pi} \langle \pi\pi, \text{out} | \mathcal{H}_W | D \rangle + b_{K\overline{K}} \langle K\overline{K}, \text{out} | \mathcal{H}_W | D \rangle + \cdots$$
MTH and Sharpe, 1204.0826

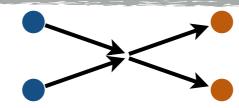

This sounds very challenging! Probably need tricks to make progress

(Example: Maybe we can find certain energy-volume combinations where one coefficient dominates?)

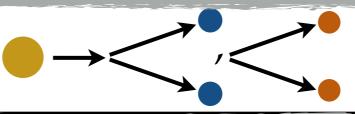
Turning on four-particle states is the biggest challenge. We expect this will give rise to additional terms on RHS. Are they suppressed (in certain cases)?


This basic story applies to all heavy multi-hadron decays

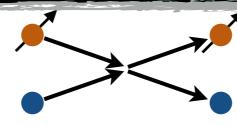
elastic scattering of identical scalars


Lüscher (1986, 1991) Rummukainen and Gottlieb (1995)

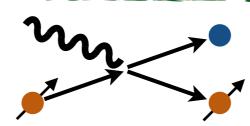
decay into identical scalars (no other open decay channels)


Lellouch and Lüscher (2001) Kim, Sachrajda and Sharpe (2005), Christ, Kim and Yamazaki (2005)

non-identical scalars, multiple coupled channels*


Bernard et al. (2011), Fu (2012), Briceño and Davoudi (2012)

decay into multiple, coupled two-particle channels*

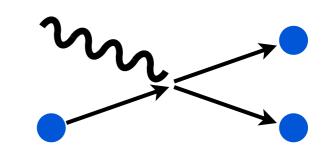

MTH and Sharpe (2012)

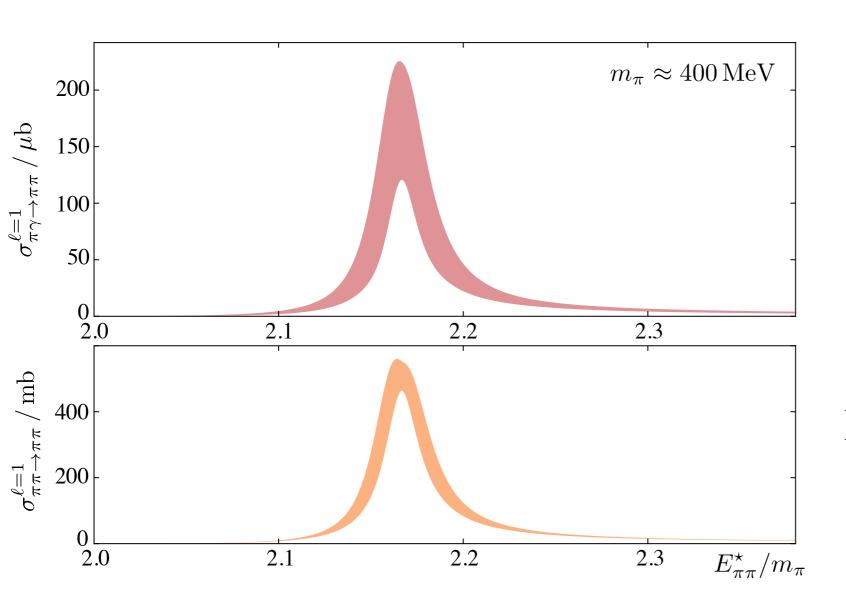
scattering of particles with intrinsic spin*

Detmold and Savage (2004) Göckeler et al. (2012) Briceño (2014)

particle production mediated by a generic local current*

Meyer (2011), Bernard et al. (2012), A. Agadjanov et al. (2014),


Briceño, MTH and Walker-Loud (2014)

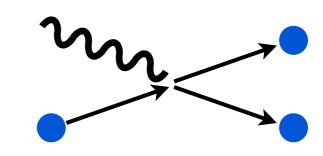

*(assumes no three or four-particle channels open)

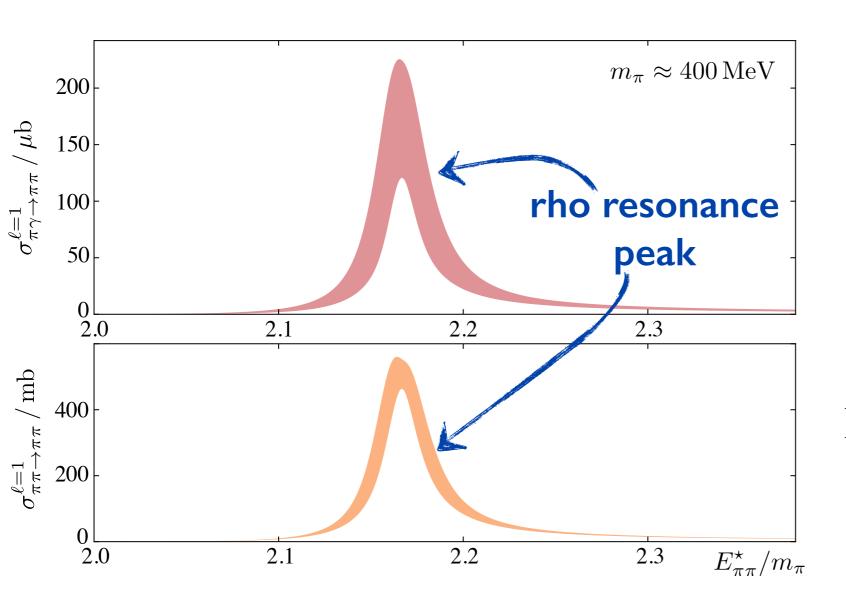
Briceño and MTH (2015)

Photoproduction

$$\langle \pi\pi, \text{out} | \mathcal{J}_{\mu} | \pi \rangle \equiv$$

Photoproduction in the rho channel


Briceño, Dudek, Edwards, Schultz, Thomas, Wilson arXiv: 1507.6622


Same technology is needed for

$$B \to K^* (\to K\pi) \ell \ell$$

Photoproduction

$$\langle \pi\pi, \text{out} | \mathcal{J}_{\mu} | \pi \rangle \equiv$$

Photoproduction in the rho channel

Briceño, Dudek, Edwards, Schultz, Thomas, Wilson arXiv: 1507.6622

Same technology is needed for

$$B \to K^* (\to K\pi) \ell \ell$$

Conclusions

Multi-hadron decays and transitions are very challenging for LQCD

I am very interested to know which multi-hadron matrix elements are most important for using experiment to constrain new physics

Note: The technology discussed here is also relevant for the long-distance contributions to neutral meson mixing

Stay tuned for future LQCD calculations of these difficult quantities