Charming new physics in rare B decays and mixing

6th workshop: "Implications of LHCb measurements and future prospects" 2016

Kirsten Leslie
University of Sussex

With Sebastian Jäeger, Matthew Kirk, Alex Lenz

Outline of talk

- Correlating mixing and rare decays : Motivation
- Methodology
- Phenomenology
- Conclusions

Motivation: B_{s} Mixing

http://www.slac.stanford.edu/xorg/hfag/osc/spring 2016/\#DG

- However mixing observables may not be very constraining, and if sizeable new physics contributions to $b->c c s$ couplings are present, could also effect b->sll
- Mixing related observables such as the decay rate difference and the semi leptonic asymmetry show consistency with the SM

Brod, Lenz, Tetlalmatzi-Xolocotzi, Wiebusch, 1412.1446v1

Motivation: Rare Decays

Altmannshofer, Straub, 1503:06199,
(see also Descotes,Hofer,Matias,Virto 1605:06059)

- Recent analysis of LHCb data suggests negative contribution to Wilson coefficient C_{9}
- Possible explanation for tensions in rare decays such as B->K*\|
- We assume there is a negative shift to C_{9}, and ask: could this be attributable to virtual charm effects?

Set up: Basic idea

- Effective operators with charm content give correlated effects in both mixing and rare B decays

$\Delta \Gamma_{q}, a_{s l}^{q}$
$A_{F B}, R_{K}, P_{5}^{\prime}$ etc

Methodology: Weak Effective Hamiltonian

$$
\mathcal{H}_{e f f}^{c c}=\frac{4 G_{F}}{\sqrt{2}}\left[\lambda_{c}\left(\Sigma_{i=1}^{10} C_{i} Q_{i}+C_{i}^{\prime} Q_{i}^{\prime}\right)+h . c\right]
$$

$$
Q_{1}^{c}=\left(\bar{c}_{L}^{i} \gamma_{\mu} b_{L}^{j}\right)\left(\bar{s}_{L}^{j} \gamma^{\mu} c_{L}^{i}\right), \quad Q_{2}^{c}=\left(\bar{c}_{L}^{i} \gamma_{\mu} b_{L}^{i}\right)\left(\bar{s}_{L}^{j} \gamma^{\mu} c_{L}^{j}\right)
$$

$$
\begin{array}{ll}
Q_{3}^{c}=\left(\bar{c}_{R}^{i} b_{L}^{j}\right)\left(\bar{s}_{L}^{j} c_{R}^{i}\right), & Q_{4}^{c}=\left(\bar{c}_{R}^{i} b_{L}^{i}\right)\left(\bar{s}_{L}^{j} c_{R}^{j}\right), \\
Q_{5}^{c}=\left(\bar{c}_{R}^{i} \gamma_{\mu} b_{R}^{j}\right)\left(\bar{s}_{L}^{j} \gamma^{\mu} c_{L}^{i}\right), & \\
Q_{6}^{c}=\left(\bar{c}_{R}^{i} \gamma_{\mu} b_{R}^{i}\right)\left(\bar{s}_{L}^{j} \gamma^{\mu} c_{L}^{j}\right), \\
Q_{7}^{c}=\left(\bar{c}_{L}^{i} b_{R}^{j}\right)\left(\bar{s}_{L}^{j} c_{R}^{i}\right), & Q_{8}^{c}=\left(\bar{c}_{L}^{i} b_{R}^{i}\right)\left(\bar{s}_{L}^{j} c_{R}^{j}\right), \\
Q_{9}^{c}=\left(\bar{c}_{L}^{i} \sigma_{\mu \nu} b_{R}^{j}\right)\left(\bar{s}_{L}^{j} \sigma^{\mu \nu} c_{R}^{i}\right), & Q_{10}^{c}=\left(\bar{c}_{L}^{i} \sigma_{\mu \nu} b_{R}^{i}\right)\left(\bar{s}_{L}^{j} \sigma^{\mu \nu} c_{R}^{j}\right),
\end{array}
$$

Rare Decay: Calculation

$\Delta C_{9}^{e f f}\left(q^{2}\right)=\left[4\left(3 \Delta C_{1}+\Delta C_{2}\right)\left(h\left(q^{2}, m_{c}\right)+\frac{2}{27}\right)-2\left(3 \Delta C_{3}+\Delta C_{4}\right)\left(h\left(q^{2}, m_{c}\right)+\frac{5}{27}\right)\right.$.

- Only shifts in Wilson coefficients $C_{1}, C_{2}, C_{3}, C_{4}$ are present - no sensitivity to $C_{5}-C_{10}$
- Delta C9' also obtained

$B-\bar{B}$ Mixing: Calculation

$$
\Gamma_{12}^{c c}=\Sigma_{i, j} C_{i} C_{j} f_{i j}^{k}\langle\bar{B}| \mathcal{O}_{k}|B\rangle
$$

OPE reduces original basis to the standard $\Delta F=2$ basis
$B-\bar{B}$ Mixing observables

$$
\frac{\Delta \Gamma_{s}}{\Delta M_{s}}=-\operatorname{Re}\left(\frac{\Gamma_{12}}{M_{12}}\right)
$$

$$
a_{s}^{l}=\operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)
$$

Semileptonic Asymmetry

Phenomenology

Results: Bounds on $\Delta C_{9}^{e f f}$ from mixing observables

- Negative shift to C_{9} can be consistent with the mixing data
- C_{1} is more effective in shifting the C_{9} contour due to larger weighting in solution

Results: Bounds on $\Delta C_{9}^{e f f}$ from mixing observables

- Again, mixing data allows sizeable contribution to $\Delta C_{9}^{e f f}$
- Effects appear less pronounced than in the $\Delta C_{1}, \Delta C_{2}$ case

Results: Bounds on $\Delta C_{9}^{e f f}$ from mixing observables

- Mixing data accommodates a scenario where C_{3} contains most of the NP and C_{2} can have a very small shift
- In all of the cases, improved accuracy in measurements of the width difference and semileptonic CP asymmetry may lead to more stringent constraints on charm effects in ΔC_{9}

Conclusions

- Deviations of experimental data from SM theory predictions could possibly be explained by a negative shift in C_{9}
- Charmed new physics in $b \rightarrow c \bar{c} s$ transitions could offer an explanation, but will affect mixing
- Bounds from mixing observables allow a negative NP contribution to C_{9} for several different combinations of Wilson coefficients
- Improved accuracy in the measurement of the width difference and semileptonic CP asymmetry may lead to tighter constraints on a "charming ΔC_{9} scenario"

back up slides

$\Delta B=2$ SUSY Basis

$$
\begin{aligned}
& \mathcal{O}_{1}^{q}=\bar{b}^{\alpha} \gamma_{\mu} L q^{\alpha} \bar{b}^{\beta} \gamma_{\mu} L q^{\beta}, \\
& \mathcal{O}_{2}^{q}=\bar{b}^{\alpha} L q^{\alpha} \bar{b}^{\beta} L q^{\beta}, \\
& \mathcal{O}_{3}^{q}=\bar{b}^{\alpha} L q^{\beta} \bar{b}^{\beta} L q^{\alpha}, \\
& \mathcal{O}_{4}^{q}=\bar{b}^{\alpha} L q^{\alpha} \bar{b}^{\beta} R q^{\beta}, \\
& \mathcal{O}_{5}^{q}=\bar{b}^{\alpha} L q^{\beta} \bar{b}^{\beta} R q^{\alpha}, \\
& \tilde{\mathcal{O}}_{1}^{q}=\bar{b}^{\alpha} \gamma_{\mu} R q^{\alpha} \bar{b}^{\beta} \gamma_{\mu} R q^{\beta}, \\
& \tilde{\mathcal{O}}_{2}^{q}=\bar{b}^{\alpha} R q^{\alpha} \bar{b}^{\beta} R q^{\beta}, \\
& \tilde{\mathcal{O}}_{3}^{q}=\bar{b}^{\alpha} R q^{\beta} \bar{b}^{\beta} R q^{\alpha},
\end{aligned}
$$

