Angular analyses of semitauonic B decays

J. Martin Camalich

R. Alonso, A. Kobach, S. Westhoff

LHCb Implications workshop 2016

October 12, 2016

Outline

(1) Intro

2 Naïve angular analysis
3 Angular analyses of the observable decay products

- $B \rightarrow D^{(*)} \tau^{-}\left(\rightarrow \ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right) \bar{\nu}_{\tau}$
- $B \rightarrow D^{(*)} \tau^{-}\left(\rightarrow \pi^{-} \nu_{\tau}\right) \bar{\nu}_{\tau}$

$R_{D^{(*)}}$ anomalies

- Lepton-universality ratios

$$
R_{D^{(*)}}=\frac{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \tau^{-} \bar{\nu}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \ell^{-} \bar{\nu}\right)}, \quad \quad \ell=e, \mu
$$

- Excesses reported consitently by different experiments in two channels at $\sim 4 \sigma$

$$
\Lambda_{\mathrm{NP}} \sim 1 \mathrm{TeV}
$$

Hadronic uncertainties (Form factors)

- Form factors are fitted to experimental $B \rightarrow D^{(*)} \ell \nu$ spectrum and LQCD!

Boyd, Grinstein \& Lebed '96, Caprini, Lellouch \& Neubert'98

- Example: $B \rightarrow D$

$$
\begin{aligned}
\langle D(k)| \bar{c} \gamma^{\mu} b|\bar{B}(p)\rangle= & (p+k)^{\mu} f_{+}\left(q^{2}\right) \\
& +q^{\mu} \frac{m_{B}^{2}-m_{D}^{2}}{q^{2}}\left(f_{+}\left(q^{2}\right)-f_{0}\left(q^{2}\right)\right)
\end{aligned}
$$

- Scalar $f_{0}\left(q^{2}\right)$ enters rate $\propto m_{\ell}^{2}$

- CVC implies $f_{0}(0)=f_{+}(0)$

Na et al. PRD92(2015)no.5,054510 (see also Bailey et al. PRD92,034506)

- In $B \rightarrow D^{*}$ (pseudo)scalar form factor $A_{0}\left(q^{2}\right)$ much less important

	R_{D}	$R_{D^{*} \text { HFAG (CLN) }}$
SM	$0.300(8)$	$0.252(4)$
Expt.	$0.391(41)(28)$	$0.322(18)(12)$

SM predictions of $R_{D^{(*)}}$ well under control!

New physics in τ decays?

- New physics..
- could look different in different $\tau \rightarrow X \nu$ decay channels
- should appear universally in all $Y \rightarrow Z \tau(\rightarrow X \nu)$ decays
- Leptonic τ decays: Michel parameters
A. Pich PPNP75(2014)41

Bounds on the $g_{\epsilon \omega}^{V}$ couplings, assuming that (non-standard) W-exchange is the only relevant interaction. The τ-decay (μ-decay) limits are at $95 \% \mathrm{CL}(90 \% \mathrm{CL})$. Numbers within parentheses use μ-decay data through cross-channel identities.

	$\left\|g_{R R}^{V}\right\|$	$\left\|g_{L R}^{V}\right\|$	$\left\|g_{\text {LL }}^{V}\right\|$	$\left\|g_{L}^{V}\right\|$
$\mu \rightarrow e$	<0.0004	<0.023	<0.017	>0.999
$\tau \rightarrow \mu$	$<0.017(0.003)$	<0.12	$<0.14(0.023)$	>0.983
$\tau \rightarrow e$	$<0.017(0.002)$	<0.13	$<0.13(0.017)$	>0.983

- 4-lepton (pseudo)scalar interactions less constrained
- Hadronic τ decays: Lepton universality ratios

$$
\begin{gathered}
R_{\tau / P} \equiv \frac{\Gamma\left(\tau^{-} \rightarrow v_{\tau} P^{-}\right)}{\Gamma\left(P^{-} \rightarrow \mu^{-} \bar{v}_{\mu}\right)}=\left|\frac{g_{\tau}}{g_{\mu}}\right|^{2} \frac{m_{\tau}^{3}}{2 m_{P} m_{\mu}^{2}} \frac{\left(1-m_{\rho}^{2} / m_{\tau}^{2}\right)^{2}}{\left(1-m_{\mu}^{2} / m_{P}^{2}\right)^{2}}\left(1+\delta R_{\tau / P}\right) \\
R_{\tau / \pi}=(0.16 \pm 0.14)
\end{gathered}
$$

- New physics constrained at subpercent level in hadronic modes

New physics in $b \rightarrow c \tau \nu$: EFT

- Low-energy effective Lagrangian (no $\mathrm{RH} \nu$)

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}^{\ell} & =-\frac{G_{F} V_{c b}}{\sqrt{2}}\left[\left(1+\epsilon_{L}^{\ell}\right) \bar{\ell} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu_{\ell} \cdot \bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) b+\epsilon_{R}^{\ell} \bar{\ell} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu_{\ell} \bar{c} \gamma^{\mu}\left(1+\gamma_{5}\right) b\right. \\
& \left.+\bar{\ell}\left(1-\gamma_{5}\right) \nu_{\ell} \cdot \bar{c}\left[\epsilon_{S}^{\ell}-\epsilon_{P}^{\ell} \gamma_{5}\right] b+\epsilon_{T}^{\ell} \bar{\ell} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) \nu_{\ell} \cdot \bar{c} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) b\right]+ \text { h.c. },
\end{aligned}
$$

Wilson coefficients: ϵ_{Γ} decouple as $\sim v^{2} / \Lambda_{\mathrm{NP}}^{2}$

- Matching to high-energy Lagrangian - SMEFT Buchmulers Wyers6, Graakowski etal:10
- Symmetry relations for ϵ_{Γ}
\star Specially powerful in rare $D \rightarrow D^{\prime} \ell \ell:$ No C_{T} and less C_{S} Alonso, Grinstein, JMC, PRL113(2014)241802
^ In charged-currents ϵ_{R}^{ℓ} : Bernard, Oertel, Passemar \& Stern PLB638(2006)480

$$
\mathcal{O}_{H u d}=\frac{i}{\Lambda_{\mathrm{NP}}^{2}}\left(\tilde{H}^{\dagger} D_{\mu} H\right)\left(\bar{u}_{R} \gamma^{\mu} d_{R}\right)
$$

RHC is lepton universal: $\epsilon_{R}^{\ell} \equiv \epsilon_{R}+\mathcal{O}\left(\frac{\nu^{4}}{\Lambda_{\mathrm{NP}}^{4}}\right)$

RHC cannot explain LUR $R_{D^{(*)}}$!

- High-energy \Longleftrightarrow low-energy dictionary
« Streamline tests of your favorite UV completion! Faroughy et al. arXiv:1609.07138

Fits to new physics

- The $R_{D(*)}$ and spectrum do not provide enough discriminating power

Freytsis et al., PRD92(2015)no.5,054018; also Sasaki et al. PRD91(2015)no.11, 114028, ...

- Looking for LUR in new decay modes
- $\Lambda_{b} \rightarrow \Lambda_{c}^{(*)} \ell \nu$ s. Meinel @ HC2NP-Tenerife
- Semileptonic B_{C} decays Lytle etal. @ BEAUTY2016 (arXiv: 1605.05645)
- $B_{S} \rightarrow D_{S}^{(*)} \ell \nu$ A. Bhol, EPL106(2014)31001
- Measure new observables

> Look at the full kinematic (angular) distributions!

A first approach: Full angular analysis of the $B \rightarrow D^{(*)} \tau \nu$

- Many angular observables as functions of helicity amplitudes (like $B \rightarrow K^{(*)} \mu \mu$!)

$$
\begin{aligned}
\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{l} d \cos \theta_{D^{\cdot}} \cdot d \chi}= & \frac{9}{32 \pi} N F\left\{\cos ^{2} \theta_{D^{*}}\left(V_{1}^{0}+V_{2}^{0} \cos 2 \theta_{l}+V_{3}^{0} \cos \theta_{l}\right)+\sin ^{2} \theta_{D^{*}}\left(V_{1}^{T}+V_{2}^{T} \cos 2 \theta_{l}+V_{3}^{T} \cos \theta_{l}\right)\right. \\
& +V_{4}^{T} \sin ^{2} \theta_{D^{*}} \sin ^{2} \theta_{l} \cos 2 \chi+V_{1}^{0 T} \sin 2 \theta_{D^{*}} \sin 2 \theta_{l} \cos \chi+V_{2}^{0 T} \sin 2 \theta_{D^{*}} \sin \theta_{l} \cos \chi \\
& \left.+V_{5}^{T} \sin ^{2} \theta_{D^{*}} \sin ^{2} \theta_{l} \sin 2 \chi+V_{3}^{0 T} \sin 2 \theta_{D^{*}} \sin \theta_{l} \sin \chi+V_{4}^{0 T} \sin 2 \theta_{D^{*}} \sin 2 \theta_{l} \sin \chi\right\} \\
V_{1}^{0}=2\left[\left(1+\frac{m_{l}^{2}}{q^{2}}\right)\left(\left|\mathcal{A}_{0}\right|^{2}+16\left|\mathcal{A}_{o T}\right|^{2}\right)+\frac{2 m_{l}^{2}}{q^{2}}\left|\mathcal{A}_{t P}\right|^{2}\right. & V_{2}^{0}=2\left(1-\frac{m_{l}^{2}}{q^{2}}\right)\left[-\left|\mathcal{A}_{0}\right|^{2}+16\left|\mathcal{A}_{0 r}\right|^{2}\right] \\
& \left.-\frac{16 m_{l}}{\sqrt{q^{2}}} \operatorname{Re}\left[\mathcal{A}_{0 T} \mathcal{A}_{0}^{*}\right]\right],
\end{aligned}
$$

Duraisamy et al., PRD90, 074013 (2014)

- Leptonic forward-backward asymmetry

Becirevic et al., arXiv:1602.03030.

- Longitudinal polarization of the D^{*}

Duraisamy et al., PRD90, 074013 (2014)

- However the τ 's lifetime is $\sim 10^{-13} s$

It is not observed but reconstructed from decay products with missing neutrinos!

QUESTION TO EXPT's

How realistic it is to fully reconstruct the kinematics of the τ ?
With which precision?

- Alternatively, study the kinematic distributions of the observable τ decay products!
- Maximize the coverage of the τ 's lifetime

Channel	$\tau \rightarrow \mu \nu \nu$	$\tau \rightarrow e \nu \nu$	$\tau \rightarrow \pi \nu$	$\tau \rightarrow \rho \nu$	$\tau \rightarrow 3 \pi \nu$	TOTAL
\mathcal{B}	17.4%	17.8%	10.82%	25%	9%	$\sim 80 \%$

- Two different strategies in the literature:

औ Analytical: Nierste et al. PRD78,015006 '08 (BD- $\pi \nu)$, Alonso, Kobach \& JMC, arXiv:1602.07671 $\left(B D^{(*)}-\ell \nu \nu\right)$, Alonso, JMC \& Westhoff, in preparation $\left(B D^{(*)}-\pi \nu\right.$ or $\left.\rho \nu\right)$ This talk
\star Montecarlo: Hagiwara et al. PRD89, 094009 (2014) (BD-3 $\pi \nu$), Bordone et al. EPJC76 (2016) no.7, 360 ($B D-\ell \nu \nu$), Ligeti et al. arXiv:1610.02045 ($\left.B D^{*}(\rightarrow D \pi)-\ell \nu \nu, \ldots\right)$ Marzia's (next) talk

Test new physics and understand better what we are measuring!

$$
B \rightarrow D^{(*)} \tau^{-}\left(\rightarrow \ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right) \bar{\nu}_{\tau}
$$

Alonso, Kobach, JMC, arXiv: 1602.07671

- The amplitude factorizes

$$
\begin{aligned}
\mathcal{M}= & \frac{4 G_{F}^{2} V_{c b} \eta_{\mathrm{ew}}}{p_{\tau}^{2}-m_{\tau}^{2}+i m_{\tau} \Gamma_{\tau}} \sum_{\lambda_{\tau}= \pm 1 / 2}\left\langle\ell^{-} \bar{\nu}_{\ell}\right| \bar{\ell}^{\rho} P_{L} \nu_{\ell}|0\rangle\left\langle\nu_{\tau}\right| \bar{\nu}_{\tau} \gamma_{\rho} P_{L} \tau\left|\tau^{-}\left(\lambda_{\tau}\right)\right\rangle \times \\
& \times\left\{H_{V}^{\mu}\left\langle\tau^{-}\left(\lambda_{\tau}\right) \bar{\nu}_{\tau}\right| \bar{\tau} \gamma_{\mu} P_{L} \nu_{\tau}|0\rangle+H_{S}\left\langle\tau^{-}\left(\lambda_{\tau}\right) \bar{\nu}_{\tau}\right| \bar{\tau} P_{L} \nu_{\tau}|0\rangle+H_{T}^{\mu \nu}\left\langle\tau^{-}\left(\lambda_{\tau}\right) \bar{\nu}_{\tau}\right| \bar{\tau} \sigma_{\mu \nu} P_{L} \nu_{\tau}|0\rangle\right\}
\end{aligned}
$$

- $H_{\Gamma}: b \rightarrow c$ matrix elements $\left(\epsilon_{\Gamma}\right)$
- Total rate:

$$
d \Gamma=\tau_{\tau} \sum_{\lambda_{\tau}} d \Gamma_{B, \lambda_{\tau}} \times d \Gamma_{\tau, \lambda_{\tau}}+\tau_{\tau}\left(\cos \rho d \Gamma_{B}^{\perp}-\sin \rho d \Gamma_{B}^{T}\right) d\left|\mathcal{I}_{\tau}\right|
$$

- Interference terms:

$$
d \Gamma_{B}^{\perp}=\frac{(2 \pi)^{4} d \Phi_{3}}{2 m_{B}} 2 \operatorname{Re}\left[\mathcal{M}_{B+} \mathcal{M}_{B-}^{\dagger}\right], \quad d \Gamma_{B}^{T}=\frac{(2 \pi)^{4} d \Phi_{3}}{2 m_{B}} 2 \operatorname{Im}\left[\mathcal{M}_{B+} \mathcal{M}_{B-}^{\dagger}\right]
$$

* Interference terms vanish upon integration of the angular variables
\star In principle sensitive to T-odd contribution $d \Gamma_{B}^{T}$ (not really in the end)

$$
B \rightarrow D^{(*)} \tau^{-}\left(\rightarrow \ell^{-} \bar{\nu}_{\ell} \nu_{\tau}\right) \bar{\nu}_{\tau}
$$

Alonso, Kobach, JMC, arXiv: 1602.07671

- Integrate analytically τ angular phase-space: (nontrivial)

$$
\frac{d^{3} \Gamma_{5}}{d q^{2} d E_{\ell} d\left(\cos \theta_{\ell}\right)}=\mathcal{B}\left[\tau_{\ell}\right] \frac{G_{F}^{2}\left|V_{c b}\right|^{2} \eta_{\mathrm{EW}}^{2}}{32 \pi^{3}} \frac{|\vec{k}|}{m_{B}^{2}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{2} \frac{E_{\ell}^{2}}{m_{\tau}^{3}} \times\left[I_{0}\left(q^{2}, E_{\ell}\right)+I_{1}\left(q^{2}, E_{\ell}\right) \cos \theta_{\ell}+I_{2}\left(q^{2}, E_{\ell}\right) \cos \theta_{\ell}^{2}\right]
$$

- $\cos \theta_{\ell}$ defined as for the normalization mode (w.r.t recoiling $D^{(*)}$ in the q rest frame)
- $I_{0,2}\left(q^{2}, E_{\ell}\right)$ accessed in $R_{D^{(*)}}$
- $I_{1}\left(q^{2}, E_{\ell}\right)$ accessible only with a FB leptonic asymmetry!

$$
\begin{gathered}
\frac{d^{2} A_{F B}\left(q^{2}, E_{\ell}\right)}{d q^{2} d E_{\ell}}=\left(\int_{0}^{1} d\left(\cos \theta_{\ell}\right)-\int_{-1}^{0} d\left(\cos \theta_{\ell}\right)\right) \frac{d^{3} \Gamma_{5}}{d q^{2} d E_{\ell} d\left(\cos \theta_{\ell}\right)} \\
R_{F B}^{(*)}=\frac{1}{\mathcal{B}\left[\tau_{\ell}\right]} \frac{1}{\Gamma_{\text {norm. }}} A_{F B},
\end{gathered}
$$

$$
x^{2}=\frac{q^{2}}{m_{\tau}^{2}}, \quad y=\frac{E_{\ell}}{m_{\tau}}
$$

- Over the region ω_{2} :

$$
\begin{gathered}
I_{0}=-\frac{2\left(2 x^{2}+1\right)(4 x y-3)}{3 x} \Gamma_{-}^{(0)}+\frac{2\left(x^{2}+2\right)(3 x-4 y)}{3 x^{2}} \Gamma_{+}^{(0)} \\
+\frac{2}{15}\left(-12 x^{2} y+10 x+\frac{5}{x}-8 y\right) \Gamma_{-}^{(2)}+\frac{\left(10 x\left(x^{2}+2\right)-8\left(2 x^{2}+3\right) y\right)}{15 x^{2}} \Gamma_{+}^{(2)}-\frac{4\left(x^{2}-1\right) y}{15 x} \mathcal{I}^{(1)}, \\
I_{1}=\frac{\left(8 x^{3} y-4 x^{2}+2\right)}{3 x} \Gamma_{-}^{(1)}-\frac{2\left(x^{3}-2 x+4 y\right)}{3 x^{2}} \Gamma_{+}^{(1)}+\frac{4}{3}\left(-2 x y-\frac{2 y}{x}+1\right) \mathcal{I}^{(0)}, \\
I_{2}=\frac{8\left(x^{2}-1\right) y}{15 x^{2}} \Gamma_{+}^{(2)}-\frac{8}{15}\left(x^{2}-1\right) y \Gamma_{-}^{(2)}+\frac{4\left(x^{2}-1\right) y}{5 x} \mathcal{I}^{(1)} .
\end{gathered}
$$

- $\Gamma_{\lambda}^{(i)}\left(\mathcal{I}^{(i)}\right)$: diagonal (interference) angular coefficients of $B \rightarrow D^{(*)} \tau \nu$
- Similar results for ω_{1}
- Angular distributions can help to discriminate signal vs. normalization

- E_{ℓ} and double (E_{ℓ}, q^{2}) spectra can also be studied

Ligeti et al. arXiv:1610.02045

- FB-asymmetry can be useful to discriminate and confirm NP!

	R_{D}	$R_{F B}$	$R_{D^{*}}$	$R_{F B}^{*}$
SM	$0.310(19)$	$0.0183(9)$	$0.252(4)$	$0.0310(7)$
Current	0.410	0.0242	0.333	0.0410
Scalar	0.400	0.0218	0.315	0.0363
Tensor	0.467	0.0151	0.346	-0.0377
Expt.	$0.391(41)(28)$	-	$0.322(18)(12)$	-

$$
B \rightarrow D \tau^{-}\left(\rightarrow \pi^{-} \nu_{\tau}\right) \bar{\nu}_{\tau}
$$

- Only two neutrinos in f.s. \Rightarrow Less kinematic information loss
- E_{π} in the q rest frame gives $\theta_{\tau d}$!!

$$
\cos \theta_{\tau d}=\frac{2 E_{\pi} E_{\tau}-m_{\pi}^{2}-m_{\tau}^{2}}{2\left|\vec{p}_{\pi}\right|\left|\vec{p}_{\tau}\right|}
$$

- $\tau \rightarrow \pi \nu$ is an obvious τ polarimeter!
- Fully-observable differential rate

$$
\frac{d^{3} \Gamma_{4}}{d q^{2} d E_{\pi} d\left(\cos \theta_{\pi}\right)}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2} \eta_{\mathrm{ew}}^{2}}{256 \pi^{3}} \frac{|\vec{k}|}{m_{B}^{2}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{2} \frac{\mathcal{B}[\tau \pi] m_{\tau}^{3}}{\left(m_{\tau}^{2}-m_{\pi}^{2}\right)^{2}} \times\left[I_{0}\left(q^{2}, E_{\pi}\right)+l_{1}\left(q^{2}, E_{\pi}\right) \cos \theta_{\pi}+I_{2}\left(q^{2}, E_{\pi}\right) \cos ^{2} \theta_{\pi}\right]
$$

- Two-fold $\left(q^{2}, E_{\pi}\right)$ differential decay rates

$$
\begin{aligned}
\frac{d^{2} \Gamma_{4}}{d q^{2} d E_{\pi}}= & \frac{G_{F}^{2}\left|V_{c b}\right|^{2} \eta_{\mathrm{ew}}^{2}}{128 \pi^{3}} \frac{|\vec{k}|}{m_{B}^{2}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{2} \times \\
& \frac{\mathcal{B}\left[\tau_{\pi}\right] m_{\tau}^{3}}{\left(m_{\tau}^{2}-m_{\pi}^{2}\right)^{2}} \times\left[\iota_{0}\left(q^{2}, E_{\pi}\right)+\frac{1}{3} I_{2}\left(q^{2}, E_{\pi}\right)\right]
\end{aligned}
$$

- Scalar and Tensor modify $d^{2} \Gamma_{4}$ up to 50% in some regions of phase-space

$\tau^{-} \rightarrow \pi^{-} \nu_{\tau}$ as a τ polarimeter

$$
\frac{d^{2} \Gamma_{4}}{d q^{2} d E_{\pi}}=\frac{\mathcal{B}\left[\tau_{\pi}\right] m_{\tau}^{2}}{\left|\vec{p}_{\tau}\right|\left(m_{\tau}^{2}-m_{\pi}^{2}\right)} \frac{d \Gamma_{B}}{d q^{2}}\left[1+\xi\left(E_{\pi}, q^{2}\right) \frac{d P_{L}}{d q^{2}}\right], \quad \xi\left(E_{\pi}, q^{2}\right)=\frac{1}{\beta \tau}\left(2 \frac{E_{\pi}}{E_{\tau}}-1\right)
$$

Slope in E_{π} of $d \Gamma_{4} \Rightarrow$ Longitudinal Polarization

$$
\frac{d P_{L}}{d q^{2}}=\frac{d \Gamma_{B,+} / d q^{2}-d \Gamma_{B,-} / d q^{2}}{d \Gamma_{B} / d q^{2}}
$$

- Applied to the BD* channel by Belle

Angular analysis in $B \rightarrow D \tau^{-}\left(\rightarrow \pi^{-} \nu_{\tau}\right) \bar{\nu}_{\tau}$

- The pionic forward-backward asymmetry

$$
\frac{d^{2} A_{F B}}{d q^{2} d E_{\pi}}=\left(\int_{0}^{1} d\left(\cos \theta_{\pi}\right)-\int_{-1}^{0} d\left(\cos \theta_{\pi}\right)\right) \frac{d^{3} \Gamma_{4}}{d q^{2} d E_{\pi} d\left(\cos \theta_{\pi}\right)}
$$

- Angular distribution (w and w/o interference)

Conclusions

- $R_{D^{(*)}}$ anomalies may imply new physics
- Very clean from the point of view of hadronic uncertainties: Data+LQCD
- Different experiments consistently agreeing on the enhancent
- However, tricky measurements: τ decaying with missing neutrinos
- We developed a general method to obtain the observable kinematic distributions of the 4- and 5-body decays

Analytic

Modular: Factorizes rates of primary B decay from secondary τ decay
Flexible: Can easily adapted to any primary decay modes
Two questions:
(1) Analytic vs Montecarlo methods

- Are analytic derivations of the distributions too far from what expt's can provide?
- Future: $\left(q^{2}, E\right)$ distributions of the angular coefficients? (like in $B \rightarrow K^{*} \mu \mu$)
(2) LHCb: Which channels or distributions should be prioritized?
- Hadronic modes beyond 3-prong decays?
- Improvements in the reconstruction of the B-meson rest frame?

