Next steps and challenges in global fits for Run 2

Nazila Mahmoudi

Lyon University & CERN

Thanks to T. Hurth, S. Neshatpour, D. Martinez Santos and V. Chobanova arXiv:1603.00865 & arXiv:1610.SOON!

Implications of LHCb measurements and future prospects CERN, October 12-14, 2016 Radiative and semileptonic rare B decays are highly sensitive probes for new physics

Inclusive decays $B \to X_s \gamma$ and $B \to X_s \ell^+ \ell^-$

- Precise theory calculations (see e.g. Huber, Hurth, Lunghi, JHEP 1506 (2015) 176 and refs therein)
- Heavy mass expansion
- $\bullet\,$ Theoretical description of power corrections available $\to\,$ they can be calculated or estimated within the theoretical approach
- Require Belle-II for full exploitation (complete angular analysis)

Exclusive decays

- Angular distributions of B → K^{*}µ⁺µ[−] → many experimentally accessible observables
- Also: $B
 ightarrow K \mu^+ \mu^-$ and $B_s
 ightarrow \phi \mu^+ \mu^-$
- Issue of hadronic uncertainties in exclusive modes no theoretical description of power corrections existing within the theoretical framework of QCD factorisation and SCET

Inclusive:

Exclusive (2012):

T. Hurth, FM, Nucl. Phys. B865 (2012) 461

Exclusive (2016):

The situation has changed drastically with the measurements of many angular observables!

 $\begin{array}{l} B \to K^+ \mu^+ \mu^-, \ B \to K^0 \mu^+ \mu^-, \ B \to K^{*+} \mu^+ \mu^-, \ B \to K^{*0} \mu^+ \mu^- \ (F_L, \ A_{FB}, \ S_i, \ P_i), \\ B_s \to \phi \mu^+ \mu^-, \ \dots \end{array}$

3 main LHCb anomalies:

B→K*µ⁺µ⁻ angular observables (P'₅ / S₅,...): 3.4σ tension ← supported by Belle
R_K = BR(B⁺ → K⁺µ⁺µ⁻)/BR(B⁺ → K⁺e⁺e⁻): 2.6σ tension in [1-6] GeV² bin
BR(B_s → φµ⁺µ⁻): 3.2σ tension in [1-6] GeV² bin

New Physics or theoretical issues?

$$\mathcal{H}_{\rm eff} = \mathcal{H}_{\rm eff}^{\rm had} + \mathcal{H}_{\rm eff}^{\rm sl}$$

$$\mathcal{H}_{ ext{eff}}^{ ext{sl}} = -rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10} C_i^{(\prime)} O_i^{(\prime)} \Big]$$

 $\langle \bar{K}^* | \mathcal{H}_{eff}^{sl} | \bar{B} \rangle$: $B \to K^*$ form factors $V, A_{0,1,2}, T_{1,2,3}$ Transversity amplitudes:

$$\begin{aligned} A_{\perp}^{L,R} &\simeq N_{\perp} \left\{ (C_{9}^{+} \mp C_{10}^{+}) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{+} T_{1}(q^{2}) \right\} \\ A_{\parallel}^{L,R} &\simeq N_{\parallel} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{-} T_{2}(q^{2}) \right\} \\ A_{0}^{L,R} &\simeq N_{0} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \left[(\ldots) A_{1}(q^{2}) + (\ldots) A_{2}(q^{2}) \right] \\ &+ 2m_{b} C_{7}^{-} \left[(\ldots) T_{2}(q^{2}) + (\ldots) T_{3}(q^{2}) \right] \right\} \\ A_{S} &= N_{S} (C_{S} - C_{S}') A_{0}(q^{2}) \end{aligned}$$

$$\left(C_{i}^{\pm}\equiv C_{i}\pm C_{i}'\right)$$

Nazila Mahmoudi

$$\mathcal{H}_{\rm eff} = \mathcal{H}_{\rm eff}^{\rm had} + \mathcal{H}_{\rm eff}^{\rm sl}$$

$$\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1\dots 6} C_i O_i + C_8 O_8 \right]$$

$$\mathcal{A}_{\lambda}^{(\mathrm{had})} = -i\frac{e^{2}}{q^{2}}\int d^{4}x e^{-iq \cdot x} \langle \ell^{+}\ell^{-}|j_{\mu}^{\mathrm{em,lept}}(x)|0\rangle$$
$$\times \int d^{4}y \, e^{iq \cdot y} \langle \bar{K}_{\lambda}^{*}|T\{j^{\mathrm{em,had},\mu}(y)\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\}|\bar{B}\rangle$$
$$\equiv \frac{e^{2}}{q^{2}}\epsilon_{\mu}L_{V}^{\mu}\left[\underbrace{\mathrm{LO \ in \ }\mathcal{O}(\frac{\Lambda}{m_{b}},\frac{\Lambda}{E_{K^{*}}})}_{\mathrm{Non-Fact.,\ QCDf}} + \underbrace{h_{\lambda}(q^{2})}_{\mathrm{power\ corrections}}\right]$$

$$\mathcal{H}_{\rm eff} = \mathcal{H}_{\rm eff}^{\rm had} + \mathcal{H}_{\rm eff}^{\rm sl}$$

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1\dots 6} C_i O_i + C_8 O_8 \right]$$

$$\mathcal{A}_{\lambda}^{(\mathrm{had})} = -i\frac{e^{2}}{q^{2}}\int d^{4}x e^{-iq \cdot x} \langle \ell^{+}\ell^{-}|j_{\mu}^{\mathrm{em,lept}}(x)|0\rangle$$
$$\times \int d^{4}y \, e^{iq \cdot y} \langle \bar{K}_{\lambda}^{*}|T\{j^{\mathrm{em,had},\mu}(y)\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\}|\bar{B}\rangle$$
$$\equiv \frac{e^{2}}{q^{2}}\epsilon_{\mu}L_{V}^{\mu}\left[\underbrace{\mathrm{LO \ in \ }\mathcal{O}(\frac{\Lambda}{m_{b}},\frac{\Lambda}{E_{K^{*}}})}_{\mathrm{Non-Fact., \ QCDf}} + \underbrace{h_{\lambda}(q^{2})}_{power \ corrections}\right]$$

$$\mathcal{H}_{\rm eff} = \mathcal{H}_{\rm eff}^{\rm had} + \mathcal{H}_{\rm eff}^{\rm sl}$$

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1...6} C_i O_i + C_8 O_8 \right]$$
$$\mathcal{A}_{\lambda}^{(\text{had})} = -i \frac{e^2}{q^2} \int d^4 x e^{-iq \cdot x} \langle \ell^+ \ell^- | j_{\mu}^{\text{em,lept}}(x) | 0 \rangle$$
$$\times \int d^4 y \, e^{iq \cdot y} \langle \bar{K}_{\lambda}^* | T \{ j^{\text{em,had},\mu}(y) \mathcal{H}_{\text{eff}}^{\text{had}}(0) \} | \bar{B} \rangle$$
$$\equiv \frac{e^2}{q^2} \epsilon_{\mu} L_V^{\mu} \left[\underbrace{\text{LO in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}})}_{\text{Non-Fact., QCDf}} + \underbrace{\frac{h_{\lambda}(q^2)}{y \text{ ower corrections}}}_{\Rightarrow \text{ unknown}} \right]$$

Anomalies can be explained with 20-50% non-factorisable power corrections at the observable level in the critical bins (Ciuchini et al., 1512.07157)

This corresponds to more than 150% error at the amplitude level for the critical bins!

Many observables \rightarrow Global fits of the latest LHCb data

Relevant Operators:

 \mathcal{O}_7 , \mathcal{O}_8 , $\mathcal{O}_{9\mu,e}^{(\prime)}$, $\mathcal{O}_{10\mu,e}^{(\prime)}$ and $\mathcal{O}_{S-P} \propto (\bar{s}P_R b)(\bar{\mu}P_L \mu) \equiv \mathcal{O}_0^{\prime}$

NP manifests itself in the shifts of individual coefficients with respect to the SM values:

$$C_i(\mu) = C_i^{\mathrm{SM}}(\mu) + \delta C_i$$

- \rightarrow Scans over the values of δC_i
- → Parametrisation of power correction uncertainties $\frac{\delta A_{\lambda}}{A_{\lambda}} = a_{\lambda}e^{i\phi_{\lambda}} + \frac{q^2}{6\text{GeV}^2}b_{\lambda}e^{i\theta_{\lambda}}$ with $a_k(b_k)$ varied between $-X\%(\times 2.5)$ and $+X\%(\times 2.5)$

Several groups doing global fits:

Using the latest LHCb results:

Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli, 1512.07157
Hurth, Mahmoudi, Neshatpour, 1603.00865
Descotes-Genon, Hofer, Matias, Virto, 1510.04239v2
Beaujean, Bobeth, Jahn, 1508.01526
Altmannshofer, Straub, 1503.06199, 1411.3161
Hurth, Mahmoudi, Neshatpour, 1410.4545

Previous studies:

Global fits

Global fits of the observables by minimisation of

$$\chi^2 = \big(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\big) \cdot (\Sigma_{\texttt{th}} + \Sigma_{\texttt{exp}})^{-1} \cdot \big(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\big)$$

 $(\Sigma_{\tt th}+\Sigma_{\tt exp})^{-1}$ is the inverse covariance matrix.

More than 100 observables relevant for leptonic and semileptonic decays:

- BR($B \rightarrow X_s \gamma$)
- BR($B \rightarrow X_d \gamma$)
- $\Delta_0(B \to K^*\gamma)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_{\mathfrak{s}} \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_{s} \mu^{+} \mu^{-})$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s e^+ e^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s e^+ e^-)$
- BR($B_s \rightarrow \mu^+ \mu^-$)
- BR($B_d \rightarrow \mu^+ \mu^-$)
- BR($B \rightarrow K^{*+} \mu^+ \mu^-$)

- BR($B \rightarrow K^0 \mu^+ \mu^-$)
- BR($B \rightarrow K^+ \mu^+ \mu^-$)

• BR
$$(B \rightarrow K^* e^+ e^-)$$

- *R*_{*K*}
- $B \to K^{*0}\mu^+\mu^-$: *BR*, *F_L*, *A_{FB}*, *S*₃, *S*₄, *S*₅, *S*₇, *S*₈, *S*₉ in 8 low *q*² and 4 high *q*²bins
- $B_s \rightarrow \phi \mu^+ \mu^-$: BR, F_L , , S_3 , S_4 , S_7 in 3 low q^2 and 2 high q^2 bins

Calculations done using SuperIso

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $\bullet~2~\times$ form factor errors (dashed line)
- $\bullet~$ 4 \times form factor errors (dotted line)

T. Hurth, FM, S. Neshatpour, Nucl. Phys. B909 (2016) 737

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $\bullet~2~\times$ form factor errors (dashed line)
- $\bullet~$ 4 \times form factor errors (dotted line)

T. Hurth, FM, S. Neshatpour, Nucl. Phys. B909 (2016) 737

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $\bullet~2~\times$ form factor errors (dashed line)
- $\bullet~4~\times$ form factor errors (dotted line)

T. Hurth, FM, S. Neshatpour, Nucl. Phys. B909 (2016) 737

The size of the form factor errors has a crucial role in constraining the allowed region!

Fits assuming different power correction uncertainties:

- 10% uncertainty (filled areas)
- 60% uncertainty (solid line)

T. Hurth, FM, S. Neshatpour, Nucl. Phys. B909 (2016) 737

Fits assuming different power correction uncertainties:

- 10% uncertainty (filled areas)
- 60% uncertainty (solid line)

T. Hurth, FM, S. Neshatpour, Nucl. Phys. B909 (2016) 737

Fits assuming different power correction uncertainties:

- 10% uncertainty (filled areas)
- 60% uncertainty (solid line)

T. Hurth, FM, S. Neshatpour, Nucl. Phys. B909 (2016) 737

Not a huge impact!

60% power correction uncertainty leads to only 20% error at the observable level.

Hadronic effects

Description also possible in terms of helicity amplitudes:

$$\begin{aligned} H_{V}(\lambda) &= -i \, N' \left\{ \frac{C_{9} \, \tilde{V}_{L\lambda}(q^{2}) + C_{9}' \, \tilde{V}_{R\lambda}(q^{2}) + \frac{m_{B}^{2}}{q^{2}} \Big[\frac{2 \, \hat{m}_{b}}{m_{B}} \left(C_{7} \, \tilde{T}_{L\lambda}(q^{2}) + C_{7}' \, \tilde{T}_{R\lambda}(q^{2}) \right) - 16 \pi^{2} \mathcal{N}_{\lambda}(q^{2}) \Big] \right\} \\ H_{A}(\lambda) &= -i \, N' \left(C_{10} \, \tilde{V}_{L\lambda}(q^{2}) + C_{10}' \, \tilde{V}_{R\lambda}(q^{2}) \right), \qquad \qquad \mathcal{N}_{\lambda}(q^{2}) = \text{leading nonfact.} + h_{\lambda} \\ H_{5} &= i \, N' \, \frac{\hat{m}_{b}}{m_{W}} \left(C_{5} - C_{5}' \right) \tilde{S}(q^{2}) \qquad \qquad \left(N' = -\frac{4 G_{F} m_{B}}{\sqrt{2}} \frac{e^{2}}{16 \pi^{2}} V_{tb} V_{ts}^{*} \right) \end{aligned}$$

Helicity FFs $\tilde{V}_{L/R}, \tilde{T}_{L/R}, \tilde{S}$ are combinations of the standard FFs $V, A_{0,1,2}, T_{1,2,3}$

A possible parametrisation of the non-factorisable power corrections $h_{\lambda(=+,-,0)}(q^2)$:

$$h_{\lambda}(q^2) = h_{\lambda}^{(0)} + rac{q^2}{1 {
m GeV}^2} h_{\lambda}^{(1)} + rac{q^4}{1 {
m GeV}^4} h_{\lambda}^{(2)}$$

It seems

S. Jäger and J. Camalich, Phys.Rev. D93 (2016) 014028, M. Ciuchini et al., JHEP 1606 (2016) 116

$$h_{\lambda}^{(0)} \longrightarrow C_7^{NP}, \qquad h_{\lambda}^{(1)} \longrightarrow C_9^{NP}$$

However, $\tilde{V}_{L(R)\lambda}$ and $\tilde{T}_{L(R)\lambda}$ both have a q^2 dependence $\implies q^4$ terms can rise due to terms which multiply Wilson coefficients $\implies C_7^{\rm NP}$ and $C_9^{\rm NP}$ can each cause effects similar to $h_{\lambda}^{(0,1,2)}$

Nazila Mahmoudi

CERN, Oct. 12, 2016

Hadronic effects

Description also possible in terms of helicity amplitudes:

$$\begin{aligned} H_{V}(\lambda) &= -i \, N' \left\{ \frac{C_{9} \, \tilde{V}_{L\lambda}(q^{2}) + C_{9}' \, \tilde{V}_{R\lambda}(q^{2}) + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2 \, \hat{m}_{b}}{m_{B}} \left(C_{7} \, \tilde{T}_{L\lambda}(q^{2}) + C_{7}' \, \tilde{T}_{R\lambda}(q^{2}) \right) - 16 \pi^{2} \mathcal{N}_{\lambda}(q^{2}) \right] \right\} \\ H_{A}(\lambda) &= -i \, N' \left(C_{10} \, \tilde{V}_{L\lambda}(q^{2}) + C_{10}' \, \tilde{V}_{R\lambda}(q^{2}) \right), \qquad \mathcal{N}_{\lambda}(q^{2}) = \text{leading nonfact.} + h_{\lambda} \\ H_{5} &= i \, N' \, \frac{\hat{m}_{b}}{m_{W}} \left(C_{5} - C_{5}' \right) \tilde{S}(q^{2}) \qquad \left(N' = -\frac{4 G_{F} m_{B}}{\sqrt{2}} \frac{e^{2}}{16 \pi^{2}} \, V_{tb} \, V_{ts}^{*} \right) \end{aligned}$$

Helicity FFs $\tilde{V}_{L/R}, \tilde{T}_{L/R}, \tilde{S}$ are combinations of the standard FFs $V, A_{0,1,2}, T_{1,2,3}$

A possible parametrisation of the non-factorisable power corrections $h_{\lambda(=+,-,0)}(q^2)$:

$$h_{\lambda}(q^2) = h_{\lambda}^{(0)} + rac{q^2}{1 {
m GeV}^2} h_{\lambda}^{(1)} + rac{q^4}{1 {
m GeV}^4} h_{\lambda}^{(2)}$$

It seems

S. Jäger and J. Camalich, Phys.Rev. D93 (2016) 014028, M. Ciuchini et al., JHEP 1606 (2016) 116

$$h_{\lambda}^{(0)} \longrightarrow C_7^{NP}, \qquad h_{\lambda}^{(1)} \longrightarrow C_9^{NP}$$

However, $\tilde{V}_{L(R)\lambda}$ and $\tilde{T}_{L(R)\lambda}$ both have a q^2 dependence $\implies q^4$ terms can rise due to terms which multiply Wilson coefficients $\implies C_7^{\rm NP}$ and $C_9^{\rm NP}$ can each cause effects similar to $h_{\lambda}^{(0,1,2)}$

Nazila Mahmoudi

CERN, Oct. 12, 2016

Hadronic power correction effect:

$$\delta H_V^{\text{p.c.}}(\lambda) = i N' m_B^2 \frac{16\pi^2}{q^2} h_\lambda(q^2) = i N' m_B^2 \frac{16\pi^2}{q^2} \left(h_\lambda^{(0)} + q^2 h_\lambda^{(1)} + q^4 h_\lambda^{(2)} \right)$$

New Physics effect:

$$\delta H_{V}^{C_{9}^{\mathrm{NP}}}(\lambda) = -iN'\tilde{V}_{L}(q^{2})C_{9}^{\mathrm{NP}} = iN'm_{B}^{2}\frac{16\pi^{2}}{q^{2}}\left(a_{\lambda}C_{9}^{\mathrm{NP}} + q^{2}b_{\lambda}C_{9}^{\mathrm{NP}} + q^{4}c_{\lambda}C_{9}^{\mathrm{NP}}\right)$$

and similarly for C_7

 \Rightarrow NP effects can be embedded in the hadronic effects.

We can do a fit for both (hadronic quantities $h_{+,-,0}^{(0,1,2)}$ (18 parameters) and Wilson coefficients C_i^{NP} (2 or 4 parameters))

Due to this embedding the two fits can be compared with the Wilk's test

Hadronic effects

Fit with 2 parameters (complex C_9)

low q² bins up to 6 GeV²

low q^2 bins up to 8 GeV²

Preliminary

Fit with 4 parameters (complex C_7 and C_9)

SM vs 2 parameters and 4 parameters p-values were independently computed through 2D profile likelihood integration, and they give similar results

 q^2 up to 6 GeV²

Preliminary

	2	4	18
0	$4.5 imes 10^{-3}$ (2.8 σ)	$9.4 imes 10^{-3}$ (2.6 σ)	$6.2 imes 10^{-2}$ (1.9 σ)
2	-	$0.27 (1.1\sigma)$	0.37 (0.89σ)
4	-	—	0.41 <mark>(0.86</mark> σ)

 q^2 up to 8 GeV²

	2	4	18
0	3.7×10^{-5} (4.1 σ)	$6.3 imes 10^{-5}$ (4.0 σ)	$6.1 imes 10^{-3}$ (2.7 σ)
2	-	$0.13 (1.5\sigma)$	0.45 <mark>(0.76</mark> σ)
4	-	—	$0.61 (0.52\sigma)$

Adding 16 more parameters does not really improve the fits

Cross-check with other $R_{\mu/e}$ ratios

Hiller & Kruger 0310219, Altmannshofer & Straub 1411.3161, Jäger & Camalich 1412.3183

- R_K is theoretically very clean compared to the angular observables
- Its tension cannot be explained by power corrections
- All tensions could be explained by new physics in C_9^{μ}

Cross-checks needed with other ratios. Our predictions (within the $\{C_9^{\mu}, C_9^{e}\}$ set):

95% C.L. prediction
[0.61, 0.93]
[0.68, 1.13]
[0.65, 0.96]
[0.85, 0.96]
[-0.21, 0.71]
[0.53, 0.92]
[0.58, 0.95]
[0.998, 0.999]
[0.87, 1.01]
[0.87, 1.01]
[0.58, 0.95]
[0.58, 0.95]

T. Hurth, FM, S. Neshatpour, Nucl. Phys. B909 (2016) 737

Cross-check with other $R_{\mu/e}$ ratios

Hiller & Kruger 0310219, Altmannshofer & Straub 1411.3161, Jäger & Camalich 1412.3183

- R_K is theoretically very clean compared to the angular observables
- Its tension cannot be explained by power corrections
- All tensions could be explained by new physics in C_9^{μ}

Cross-checks needed with other ratios. Our predictions (within the $\{C_9^{\mu}, C_9^{e}\}$ set):

Observable	95% C.L. prediction
$\mathrm{BR}(B \to X_{s}\mu^{+}\mu^{-})/\mathrm{BR}(B \to X_{s}e^{+}e^{-})_{q^{2} \in [1, 6](\mathrm{GeV})^{2}}$	[0.61, 0.93]
$\mathrm{BR}(B ightarrow X_s \mu^+ \mu^-) / \mathrm{BR}(B ightarrow X_s e^+ e^-)_{q^2 > \mathbf{14.2(GeV)^2}}$	[0.68, 1.13]
$\mathrm{BR}(B^{\boldsymbol{0}} \to K^{*\boldsymbol{0}} \mu^+ \mu^-) / \ \mathrm{BR}(B^{\boldsymbol{0}} \to K^{*\boldsymbol{0}} e^+ e^-)_{q^{\boldsymbol{2}} \in [1, 6](\mathrm{GeV})^{\boldsymbol{2}}}$	[0.65, 0.96]
$\langle F_L(B^{0} \to K^{*0} \mu^+ \mu^-) \rangle / \langle F_L(B^{0} \to K^{*0} e^+ e^-) \rangle_{q^{2} \in [1, 6] (\text{GeV})^{2}}$	[0.85, 0.96]
$\langle A_{F\!B}(B^{0} o K^{*0} \mu^+ \mu^-) \rangle / \langle A_{F\!B}(B^{0} o K^{*0} e^+ e^-) \rangle_{q^{2} \in [4, 6](GeV)^{2}}$	[-0.21, 0.71]
$\langle S_5(B^0 o {\mathcal K}^{*0} \mu^+ \mu^-) angle / \langle S_5(B^0 o {\mathcal K}^{*0} e^+ e^-) angle_{q^2 \in [4,6](\mathrm{GeV})^2}$	[0.53, 0.92]
$\mathrm{BR}(B^{0} \to K^{*0} \mu^{+} \mu^{-}) / \ \mathrm{BR}(B^{0} \to K^{*0} e^{+} e^{-})_{q^{2} \in [15, 19](\mathrm{GeV})^{2}}$	[0.58, 0.95]
$\langle F_L(B^{0} \to K^{*0} \mu^+ \mu^-) \rangle / \langle F_L(B^{0} \to K^{*0} e^+ e^-) \rangle_{q^{2} \in [15, 19](\text{GeV})^{2}}$	[0.998, 0.999]
$\langle A_{F\!B}(B^{0} o K^{*0} \mu^+ \mu^-) \rangle / \langle A_{F\!B}(B^{0} o K^{*0} e^+ e^-) \rangle_{q^2 \in [15, 19](\text{GeV})^2}$	[0.87, 1.01]
$\langle S_5(B^0 \to K^{*0} \mu^+ \mu^-) \rangle / \langle S_5(B^0 \to K^{*0} e^+ e^-) \rangle_{q^2 \in [15, 19](GeV)^2}$	[0.87, 1.01]
$\mathrm{BR}(B^+ \to K^+ \mu^+ \mu^-) / \ \mathrm{BR}(B^+ \to K^+ e^+ e^-)_{q^2 \in [1, 6](\mathrm{GeV})^2}$	[0.58, 0.95]
$\mathrm{BR}(B^+ \to K^+ \mu^+ \mu^-) / \ \mathrm{BR}(B^+ \to K^+ e^+ e^-)_q 2_{\in [15, 22](\mathrm{GeV})^2}$	[0.58, 0.95]

T. Hurth, FM, S. Neshatpour, Nucl. Phys. B909 (2016) 737

Assuming a possible future upgrade, with an integrated luminosity of 300 $\rm fb^{-1}$

 \rightarrow Scaling down the present LHCb uncertainties by a factor 10, assuming the current central values

LHCb upgrade would clear up the situation!

- The full LHCb Run 1 results still show some tensions with the SM predictions
- Significance of the anomalies depends on the assumptions on the power corrections
- We compared the fits for the NP and hadronic parameters through the Wilk's test
- At the moment adding the hadronic parameters does not improve the fit compared to the new physics fit, but the situation is inconclusive
- The LHCb upgrade will have enough precision to distinguish between NP and power corrections
- If the issue remains, Belle-II will be able to resolve it (see T. Hurth, FM, S. Neshatpour, JHEP 1412 (2014) 053)
- Confirmation of R_K by other rations would indirectly confirm NP also in angular observables

Backup

Dilepton invariant mass spectrum: $\frac{d\Gamma}{dq^2} = \frac{3}{4} \left(J_1 - \frac{J_2}{3} \right)$

Forward backward asymmetry:

$$A_{\rm FB}(q^2) \equiv \left[\int_{-1}^0 - \int_0^1\right] d\cos\theta_l \frac{d^2\Gamma}{dq^2 d\cos\theta_l} \left/\frac{d\Gamma}{dq^2} = \frac{3}{8}J_6 \right/\frac{d\Gamma}{dq^2}$$

Forward backward asymmetry zero-crossing: $q_0^2 \simeq -2m_b m_B \frac{C_9^{\text{eff}}(q_0^2)}{C_7} + O(\alpha_s, \Lambda/m_b)$ \rightarrow fix the sign of C_9/C_7

Polarization fractions:

$$F_L(q^2) = \frac{|A_0|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}, \ F_T(q^2) = 1 - F_L(q^2) = \frac{|A_{\perp}|^2 + |A_{\parallel}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

$$\langle P_1 \rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\text{bin}} dq^2 [J_3 + \bar{J}_3]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_2 \rangle_{\text{bin}} = \frac{1}{8} \frac{\int_{\text{bin}} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \\ \langle P'_4 \rangle_{\text{bin}} = \frac{1}{N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_4 + \bar{J}_4] \qquad \langle P'_5 \rangle_{\text{bin}} = \frac{1}{2N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \\ \langle P'_6 \rangle_{\text{bin}} = \frac{-1}{2N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_7 + \bar{J}_7] \qquad \langle P'_8 \rangle_{\text{bin}} = \frac{-1}{N'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_8 + \bar{J}_8]$$

with

$$\mathcal{N}_{\rm bin}^\prime = \sqrt{-\int_{\rm bin} dq^2 [J_{2s}+\bar{J}_{2s}] \int_{\rm bin} dq^2 [J_{2c}+\bar{J}_{2c}]}$$

+ CP violating clean observables and other combinations

U. Egede et al., JHEP 0811 (2008) 032, JHEP 1010 (2010) 056 J. Matias et al., JHEP 1204 (2012) 104 S. Descotes-Genon et al., JHEP 1305 (2013) 137 At Belle-II, for inclusive $b \rightarrow s\ell\ell$:

expected uncertainty of 2.9% (4.1%) for the branching fraction in the low- (high-) q^2 region, absolute uncertainty of 0.050 in the low- q^2 bin 1 (1 < q^2 < 3.5 GeV²), 0.054 in the low- q^2 bin 2

 $(3.5 < q^2 < 6 \text{ GeV}^2)$ for the normalised A_{FB}

T. Hurth, FM, JHEP 1404 (2014) 097

T. Hurth, FM, S. Neshatpour, JHEP 1412 (2014) 053

Predictions based on our model-independent analysis

black cross: future measurements at Belle-II assuming the best fit solution red cross: SM predictions

 \rightarrow inclusive mode will lead to very strong constraints

$$\mathcal{H}_{\rm eff} = \mathcal{H}_{\rm eff}^{\rm had} + \mathcal{H}_{\rm eff}^{\rm sl}$$

$$\mathcal{H}_{ ext{eff}}^{ ext{sl}} = -rac{4\,\mathcal{G}_F}{\sqrt{2}}\,V_{tb}\,V_{ts}^*\Big[\sum_{i=7,9,10}\,C_i^{(\prime)}\,O_i^{(\prime)}\Big]$$

Transversity amplitudes:

$$\begin{aligned} A_{\perp}^{L,R} &= N_{\perp} \left\{ \left(C_{9}^{+} \mp C_{10}^{+} \right) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{+} T_{1}(q^{2}) \right\} + \delta A_{\perp}(q^{2}) \\ A_{\parallel}^{L,R} &= N_{\parallel} \left\{ \left(C_{9}^{-} \mp C_{10}^{-} \right) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{-} T_{2}(q^{2}) \right\} + \delta A_{\parallel}(q^{2}) \\ A_{0}^{L,R} &= N_{0} \left\{ \left(C_{9}^{-} \mp C_{10}^{-} \right) \left[(\ldots) A_{1}(q^{2}) + (\ldots) A_{2}(q^{2}) \right] \\ &+ 2m_{b} C_{7}^{-} \left[(\ldots) T_{2}(q^{2}) + (\ldots) T_{3}(q^{2}) \right] \right\} + \delta A_{0}(q^{2}) \\ A_{S} &= N_{S} (C_{S} - C_{S}') A_{0}(q^{2}) \end{aligned}$$

$$\begin{split} V_{\pm}(q^2) &= \frac{1}{2} \left[\left(1 + \frac{m_V}{m_B} \right) A_1(q^2) \mp \frac{\lambda^{1/2}}{m_B(m_B + m_V)} V(q^2) \right], \\ V_0(q^2) &= \frac{1}{2m_V \lambda^{1/2}(m_B + m_V)} \left[(m_B + m_V)^2 (m_B^2 - q^2 - m_V^2) A_1(q^2) - \lambda A_2(q^2) \right], \\ T_{\pm}(q^2) &= \frac{m_B^2 - m_V^2}{2m_B^2} T_2(q^2) \mp \frac{\lambda^{1/2}}{2m_B^2} T_1(q^2), \\ T_0(q^2) &= \frac{m_B}{2m_V \lambda^{1/2}} \left[(m_B^2 + 3m_V^2 - q^2) T_2(q^2) - \frac{\lambda}{(m_B^2 - m_V^2)} T_3(q^2) \right], \\ S(q^2) &= A_0(q^2), \\ V_0(q^2) &= \frac{2m_B \sqrt{q^2}}{\lambda^{1/2}} \tilde{V}_0(q^2), \\ T_0(q^2) &= \frac{2m_B^3 \sqrt{q^2}}{\sqrt{q^2} \lambda^{1/2}} \tilde{T}_0(q^2), \\ S(q^2) &= -\frac{2m_B(m_b + m_s)}{\lambda^{1/2}} \tilde{S}(q^2), \\ V_{\pm 1}(q^2) &= \tilde{V}_{\pm 1}(q^2), \\ T_{\pm 1}(q^2) &= \tilde{T}_{\pm 1}(q^2), \end{split}$$

where $V_{R\lambda} = -V_{-\lambda}$, $T_{R\lambda} = -T_{-\lambda}$, $S_R = -S_L$.

The form factors $V_{\pm,0}$ and $T_{\pm,0}$ when using the updated results from version 2 of Zwicky et al.

Figure: The central values and uncertainties of the helicity form factors $V_{\pm,0}$ and $T_{\pm,0}$ for $B \to K^*$ using form factor results of $V, A_{1,2}$ and $T_{1,2,3}$ from version 2 of Zwicky et al.

Traditional form factors:

$$\begin{split} &\langle \bar{K}^* | \bar{s} \gamma^{\mu} b | \bar{B} \rangle \longrightarrow V(q^2) \\ &\langle \bar{K}^* | \bar{s} \gamma^{\mu} \gamma_5 b | \bar{B} \rangle \longrightarrow A_0(q^2), A_1(q^2), A_2(q^2) \\ &\langle \bar{K}^* | \bar{s} \sigma^{\mu\nu} b | \bar{B} \rangle \longrightarrow T_1(q^2), T_2(q^2), T_3(q^2) \end{split}$$

Helicity form factors:

$$egin{aligned} &\langle ar{K}^*_\lambda | ar{s} {} {} {}^{st}(\lambda) P_{L(R)} b | ar{B}
angle \longrightarrow ar{V}_{L(R)\lambda}(q^2) \ & \epsilon^*(\lambda) q^
u \langle ar{K}^*_\lambda | ar{s} \sigma_{\mu
u} P_{L(R)} b | ar{B}
angle \longrightarrow ar{T}_{L(R)\lambda}(q^2) \ & \langle ar{K}^*_{\lambda(=0)} | ar{s} P_{L(R)} b | ar{B}
angle \longrightarrow ar{S}(q^2) \end{aligned}$$

Role of S₅

Removing S_5 from the fit:

While the tension of $C_9^{\rm SM}$ and best fit point value of C_9 is slightly reduced in the various two operator fits, still the tension exists at more than 2σ

 \rightarrow S5 is not the only observable which drives C9 to negative values!

Nazila Mahmoudi

CERN, Oct. 12, 2016