Bottom-Quark Forward-Central Asymmetry at LHCb

Christopher W. Murphy

Pisa, Scuola Normale Superiore

Implications of LHCb measurements and future prospects $- \frac{13}{10}/2016$

Christopher W. Murphy (SNS)

Outline

This talk:

- (1) Introduction
- (2) Theoretical Predictions
- (3) Current Experimental Results

Next talk by Rhorry Gauld:

(4) Future Prospects

3

・ 同 ト ・ ヨ ト ・ ヨ ト

- B. Grinstein, and C.M., "Bottom-Quark Forward-Backward Asymmetry in the Standard Model and Beyond," *Phys.Rev.Lett.* **111** (2013) 062003, [arXiv:1302.6995].
- C.M., "Bottom-Quark Forward-Backward and Charge Asymmetries at Hadron Colliders," *Phys. Rev.* D92 (2015) 054003, [arXiv:1504.02493].
- R. Gauld, U. Haisch, B.D. Pecjak, and E. Re, "Beauty-quark and charm-quark pair production asymmetries at LHCb," *Phys.Rev.* D92 (2015) 034007, [arXiv:1505.02429].

A B A A B A

• Million dollar question:

- What lies Beyond the Standard Model (BSM)?
- Measuring asymmetries (forward-backward, *CP*, forward-central, production, forward-backward of decay products, ...) helps to answer this question.

$$A(x) \equiv \frac{N(x>0) - N(x<0)}{N(x>0) + N(x<0)}$$

 \bullet precision predictions / small SM values \rightarrow excellent probe of BSM

- Million dollar question:
 - What lies Beyond the Standard Model (BSM)?
- Measuring asymmetries (forward-backward, *CP*, forward-central, production, forward-backward of decay products, ...) helps to answer this question.

$$A(x) \equiv \frac{N(x>0) - N(x<0)}{N(x>0) + N(x<0)}$$

 $\bullet\,$ precision predictions / small SM values $\rightarrow\,$ excellent probe of BSM

Forward-Backward Asymmetries

Collider w/ asymmetric initial state (e^+e^- , $p\bar{p}$):

$$A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

Example:

- $e^-e^+ \rightarrow Q\bar{Q}$
- $\Delta y = y_Q y_{\bar{Q}}$

Forward-Backward Asymmetries

LEP 1 –
$$A_{FB}^{(0,b)}$$
 (Z-pole) – 2.3 σ

Quantity	Value	Standard Model	Pull	
M_Z [GeV]	91.1876 ± 0.0021	91.1880 ± 0.0020	-0.2	
Γ_Z [GeV]	2.4952 ± 0.0023	2.4955 ± 0.0009	-0.1	
$\Gamma(had)$ [GeV]	1.7444 ± 0.0020	1.7420 ± 0.0008	_	
Γ(inv) [MeV]	499.0 ± 1.5	501.66 ± 0.05	_	
$\Gamma(\ell^+\ell^-)$ [MeV]	83.984 ± 0.086	83.995 ± 0.010	_	
$\sigma_{\rm had}[\rm nb]$	41.541 ± 0.037	41.479 ± 0.008	1.7	
Re	20.804 ± 0.050	20.740 ± 0.010	1.3	
R_{μ}	20.785 ± 0.033	20.740 ± 0.010	1.4	
R_{τ}	20.764 ± 0.045	20.785 ± 0.010	-0.5	
R_b	0.21629 ± 0.00066	0.21576 ± 0.00003	0.8	
R _c	0.1721 ± 0.0030	0.17226 ± 0.00003	-0.1	
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01616 ± 0.00008	-0.7	
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.6	
$A_{FB}^{(0,\tau)}$	0.0188 ± 0.0017		1.6	
$A_{FB}^{(0,b)}$	0.0992 ± 0.0016	0.1029 ± 0.0003	-2.3	
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0735 ± 0.0002	-0.8	
$A_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1030 ± 0.0003	-0.5	
\bar{s}_{ℓ}^2	0.2324 ± 0.0012	0.23155 ± 0.00005	0.7	

PDG

 $\mathsf{CDF} - A_{FB}^{t\bar{t}} \ (M_{t\bar{t}} > 450 \text{ GeV}) - 3.4\sigma$

Christopher W. Murphy (SNS)

 $A_{FC}^{b\bar{b}}$ at LHCb

∃ ⊳ LHCb Implications

э

Forward-Backward Asymmetries

LEP 1 –
$$A_{FB}^{(0,b)}$$
 (Z-pole) – 2.3 σ

Quantity	Value	Standard Model	Pull	
M_Z [GeV]	91.1876 ± 0.0021	91.1880 ± 0.0020	-0.2	
Γ_Z [GeV]	2.4952 ± 0.0023	2.4955 ± 0.0009	-0.1	
Γ(had) [GeV]	1.7444 ± 0.0020	1.7420 ± 0.0008	_	
Γ(inv) [MeV]	499.0 ± 1.5	501.66 ± 0.05	_	
$\Gamma(\ell^+\ell^-)$ [MeV]	83.984 ± 0.086	83.995 ± 0.010	_	
$\sigma_{\rm had}[\rm nb]$	41.541 ± 0.037	41.479 ± 0.008	1.7	
R_e	20.804 ± 0.050	20.740 ± 0.010	1.3	
R_{μ}	20.785 ± 0.033	20.740 ± 0.010	1.4	
R_{τ}	20.764 ± 0.045	20.785 ± 0.010	-0.5	
R_b	0.21629 ± 0.00066	0.21576 ± 0.00003	0.8	
R_c	0.1721 ± 0.0030	0.17226 ± 0.00003	-0.1	
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01616 ± 0.00008	-0.7	
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.6	
$A_{FB}^{(0,\tau)}$	0.0188 ± 0.0017		1.6	
$A_{FB}^{(0,b)}$	0.0992 ± 0.0016	0.1029 ± 0.0003	-2.3	
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0735 ± 0.0002	-0.8	
$A_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1030 ± 0.0003	-0.5	
\bar{s}_{ℓ}^2	0.2324 ± 0.0012	0.23155 ± 0.00005	0.7	

- No significant excess w.r.t. SM
- Agreement not perfect

Czakon, Fielder, Mitov arXiv:1411.3007

< A

PDG

Christopher W. Murphy (SNS)

 $A_{FC}^{b\bar{b}}$ at LHCb

sorted by: best (suggested)

[-] hikaruzero 1 7 points 3 years ago*

Why should there be any asymmetry at all, even in the Standard Model? Anybody who's up on their science care to elaborate?

Edit: I realize I worded the above question pretty vaguely, so for anyone else who wants to take a stab, please see a revised question below:

What is the *source* of the forwards-backwards asymmetry that is predicted by the Standard Model? For example, is this due to neutral particle oscillation in briefly-existing B+B-bar systems, or due to the CP-violating phase in the CKM matrix, etc.?

2nd Edit: I was given the answer by one of the paper's authors! Check it out!

permalink embed

ヨトィヨト

< **1** → <

Quark asymmetries hint at physics beyond the Standard Model ... phys.org

3 years ago by davidreiss666 21 comments share

sorted by: best (suggested)

- 🕨 [-] hikaruzero 🚺 7 points 3 years ago*
- Why should there be any asymmetry at all, even in tr elaborate?

Edit: I realize I worded the above question pretty vag revised question below:

What is the *source* of the forwards-backwards asymm this due to neutral particle oscillation in briefly-existin matrix, etc.?

2nd Edit: I was given the answer by one of the paper

I vanted to clarify some questions in reddit about why the Standard Model has forward-backward asymmetrics. This inquisitive contributor was adamant: not what is it but why is it. I welcome the challenge. After all, Feynman said something along the lines that if you cannot explain it to a non-specialist, you simply don't understand it.

I found that the space provided by reddit is too limiting, so I decided to write my own page about it and posted the link. There are a couple of

🔶 [-] bgrinstein 2 points 3 years ago 🙆

I can explain :"why" there is a FB asymmetry. (I should, I am one of the authors of the paper being reported here). But it takes more than a couple of lines. So I prepared a web page for this. Visit:

http://leewick.ucsd.edu/~ben/FBasymmetry/Blank.html

permalink embed parent

・ロト ・ 一下 ・ ・ ヨ ト ・ ヨ ト

KM

(1) Kinematics – need odd powers of $\cos \theta$ in $d\sigma$

- Spin-0: $P_0(\cos\theta)$
- Spin-1: $P_{0,1,2}(\cos \theta)$
- *t*-channel: $P_{all}(\cos\theta)$

- Interference between 1- and 2photon/gluon exchange
- $d\sigma$ odd in $\cos\theta$ by \mathcal{C} -conjugation invariance

Fig. from Kühn, Rodrigo hep-ph/9807420

 $A_{FC}^{b\bar{b}}$ at LHCb

(2) (non-)symmetries (gauge, discrete) of theory

 $U(1), SU(N \ge 3) \rightarrow A_{FC}$ at NLO

Fig. from Kühn, Rodrigo hep-ph/9807420

Parity violation \rightarrow tree level A_{FC}

Christopher W. Murphy (SNS)

 $A_{FC}^{bar{b}}$ at LHCb

LHCb Implications 11 / 29

Heavy Quark A_{FB} at Hadron Colliders

Contributions to asymmetry:

- LEP directly sensitive to asymmetry from matrix elements
- Tevatron matrix elements *and* PDFs must be asymmetric Extracting a heavy quark asymmetry:

• $t\bar{t}$: decay products preserve info about $A_{FB}^{t\bar{t}}$

• $b\bar{b}$, $c\bar{c}$: hadronize before decaying

- Hadron based:
$$p\bar{p} \rightarrow B^{\pm}X$$
 w/ $q_{FB} = -Q_B \operatorname{sign}(\eta_B)$

$$A_{FB}(B^{\pm}) = \frac{N(q_{FB} > 0) - N(q_{FB} < 0)}{N(q_{FB} > 0) + N(q_{FB} < 0)}$$

- Jet based: $p\bar{p} \rightarrow b\bar{b}X$ w/ $\Delta y = y_b - y_{\bar{b}}$

$$A_{FB}^{b\bar{b}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

What about at LHCb?

- LHC: symmetric initial state
 - $A_{FB} = 0$ by construction
 - underlying matrix elements still asymmetric
 - exploit asymmetry between PDFs of q and $ar{q}$
- Hadron based: $pp \rightarrow B^{\pm}X$ production asymmetry

$$A_P(B^{\pm}) = \frac{N(B^-) - N(B^+)}{N(B^-) + N(B^+)}$$

• Jet based: $pp \rightarrow b\bar{b}X$ – forward-central asymmetry

$$A_{FC}^{b\bar{b}} = \frac{N(\Delta|y|>0) - N(\Delta|y|<0)}{N(\Delta|y|>0) + N(\Delta|y|<0)}$$

now with $\Delta |y| = |y_b| - |y_{\bar{b}}|$

A_{FC} in the Standard Model

$$A_{FC} \sim \frac{\alpha^2 \tilde{N}_0 + \alpha_s^3 N_1 + \alpha_s^2 \alpha \tilde{N}_1 + \alpha_s^4 N_2 + \cdots}{\alpha^2 \tilde{D}_0 + \alpha_s^2 D_0 + \alpha_s^3 D_1 + \alpha_s^2 \alpha \tilde{D}_1 + \cdots}$$

- NLO QCD dominant contribution to A_{FB}^{tt} at hadron colliders ($\sim \alpha_s N_1/D_0 + \cdots$)
- Grinstein, CM 1302.6995 showed previously neglected tree level Z exchange dominates $A_{FB,FC}^{b\bar{b}}$ for $M_{b\bar{b}} \sim M_Z$
- Z can decay to $b\bar{b}$, $c\bar{c}$ (but not $t\bar{t}$) \rightarrow resonant enhancement $(Z \gamma \text{ interference not enhanced})$
- Gauld et al. 1505.02429: Z contribution to \tilde{N}_1 (not enhanced), $O(\alpha^2 \alpha_s)$ corrections, qg initiated asymmetry ($\sim 10\%$ of N_1 , unlike $t\bar{t}$ case)

< □ > < □ > < □ > < □ > < □ > < □ >

A_{FC} in the Standard Model

$$A_{FC} \sim \frac{\alpha^2 \tilde{N}_0 + \alpha_s^3 N_1 + \alpha_s^2 \alpha \tilde{N}_1 + \alpha_s^4 N_2 + \cdots}{\alpha^2 \tilde{D}_0 + \alpha_s^2 D_0 + \alpha_s^3 D_1 + \alpha_s^2 \alpha \tilde{D}_1 + \cdots}$$

- NLO QCD dominant contribution to A_{FB}^{tt} at hadron colliders ($\sim \alpha_s N_1/D_0 + \cdots$)
- Grinstein, CM 1302.6995 showed previously neglected tree level Z exchange dominates $A_{FB,FC}^{b\bar{b}}$ for $M_{b\bar{b}} \sim M_Z$
- Z can decay to $b\bar{b}$, $c\bar{c}$ (but not $t\bar{t}$) \rightarrow resonant enhancement $(Z \gamma \text{ interference not enhanced})$
- Gauld et al. 1505.02429: Z contribution to \tilde{N}_1 (not enhanced), $O(\alpha^2 \alpha_s)$ corrections, qg initiated asymmetry (~ 10% of N_1 , unlike $t\bar{t}$ case)

$\mathsf{CDF}\ A^{b\bar{b}}_{FB}\ \mathsf{Results}$

Low Mass Analysis 1601.06526

High Mass Analysis 1504.06888

SM predictions from CM 1504.02493

Christopher W. Murphy (SNS)

 $A_{FC}^{b\bar{b}}$ at LHCb

LHCb Implications 15 / 29

э

・ 御 ト ・ ヨ ト ・ ヨ ト

LHCb 7 TeV $A_{FC}^{b\bar{b}}$ Results

	. 12			
NLO	$A_{ m FC}^{oo}$ [%]	QCD	QCD-EW	\mathbf{EW}
$m_{b\bar{b}} \in [40,75]{\rm GeV}$	$0.59\substack{+0.32 \\ -0.26}$	100.6%	-4.9%	4.3%
$\overline{m_{b\bar{b}} \in [75, 105] \mathrm{GeV}}$	$2.23\substack{+0.09 \\ -0.75}$	33.5%	-1.4%	67.9%
$m_{b\bar{b}} > 105{\rm GeV}$	$1.69\substack{+0.34\\-0.72}$	86.6%	-7.1%	20.5%
LO				
$m_{b\bar{b}} \in [40,75]{\rm GeV}$	$0.36\substack{+0.04 \\ -0.03}$	105.0%	-5.1%	0.2%
$\overline{m_{b\bar{b}} \in [75, 105] \mathrm{GeV}}$	$2.38\substack{+0.45 \\ -0.37}$	30.9%	-1.2%	70.3%
$m_{b\bar{b}} > 105 \mathrm{GeV}$	$1.34_{-0.12}^{+0.12}$	96.8%	-8.3%	11.5%

Shape of SM prediction drastically different w/o EW terms

Fig. & SM predictions from Gauld, Haisch, Pecjak, Re 1505.02429; LHCb results from 1406.4789

Christopher W. Murphy (SNS)

 $A_{FC}^{b\bar{b}}$ at LHCb

LHCb Implications 16 / 29

LHCb $A_{FC}^{b\bar{b}}$ Results & Future Prospects

Fig. & SM predictions from Gauld et al. 1505.02429; LHCb results from 1406.4789

SM Future Prospects

- $A_{FC}^{b\overline{b}}$ becomes systematically limited around $\sim 10~{\rm fb}^{-1}$
- Central value smaller at 13/14 TeV than 7/8 TeV (even smaller for 100 TeV)
- $A_{FC}^{b\bar{b}}(Z\text{-pole})$ currently non-zero at 1.8σ
 - 3.0σ w/ 10 fb^{-1} & same central value
 - 1.7σ w/ 10 fb⁻¹ & 13 TeV SM central value

LHCb $A_{FC}^{b\bar{b}}$ Results & Future Prospects

BSM Future Prospects

- Lighter mass BSM $(M \lesssim 250 \text{ GeV})$ already constrained by Tevatron + LHC7
- More data useful for constraining heavier BSM scenarios
- Distinguish flavor structure of competing BSM models

Grinstein, CM 1302.6995; CM 1504.02493

イロト イ理ト イヨト イヨト

Modified $Zb\bar{b}$ Couplings

- Current hadron collider results not competitive w/ LEP
- See next talk by Rhorry for future prospects

CM 1504.02493

 $A_{FC}^{b\bar{b}}$ at LHCb

Production Asymmetries at LHCb

Production asymmetry can mimic CP violation

$$A(t) \approx A_{CP} + A_D + A_P \frac{\cos(\Delta m t)}{\cosh(\Delta \Gamma t/2)}$$

$$A_{CP} = \frac{\Gamma(\bar{B}^{0} \to \bar{f}) - \Gamma(B^{0} \to f)}{\Gamma(\bar{B}^{0} \to \bar{f}) + \Gamma(B^{0} \to f)}, \quad A_{D} = \frac{\epsilon_{\bar{f}} - \epsilon_{f}}{\epsilon_{\bar{f}} + \epsilon_{f}}, \quad A_{P} = \frac{N(\bar{B}^{0}) - N(B^{0})}{N(\bar{B}^{0}) + N(B^{0})}$$

- $A_P(D_s^{\pm}) = (-0.33 \pm 0.22 \pm 0.10)\%$ 1205.0897
- $A_P(D^{\pm}) = (-0.96 \pm 0.26 \pm 0.18)\%$ 1210.4112
- $A_P(B^0) = (-0.35 \pm 0.76 \pm 0.28)\%$ 1408.0275
- $A_P(B_s^0) = (1.09 \pm 2.61 \pm 0.66)\%$ 1408.0275

Production Asymmetries at LHCb

Production asymmetry can mimic CP violation

$$A(t) \approx A_{CP} + A_D + A_P \frac{\cos(\Delta m t)}{\cosh(\Delta \Gamma t/2)}$$

$$A_{CP} = \frac{\Gamma(\bar{B}^{0} \to \bar{f}) - \Gamma(\bar{B}^{0} \to f)}{\Gamma(\bar{B}^{0} \to \bar{f}) + \Gamma(\bar{B}^{0} \to f)}, \quad A_{D} = \frac{\epsilon_{\bar{f}} - \epsilon_{f}}{\epsilon_{\bar{f}} + \epsilon_{f}}, \quad A_{P} = \frac{N(\bar{B}^{0}) - N(\bar{B}^{0})}{N(\bar{B}^{0}) + N(\bar{B}^{0})}$$

LHCb-CONF-2012-031

- Reports $\sigma(pp\to\Lambda^0_bX)$ and $\sigma(pp\to\bar\Lambda^0_bX)$
- $A_P(\Lambda_b^0) = (-0.23 \pm 0.13)\%$ w/ 36.4 pb⁻¹
- $A_P(\Lambda_b^0) = (-0.23 \pm 0.06)\%$ (naïvely) w/ full Run-1 dataset, non-zero at 3.4σ

- Measuring a more significant non-zero asymmetry at 13/14 TeV (w.r.t. 7 TeV) naïvely requires improved systematics or undiscovered BSM
- More data useful for constraining BSM scenarios w/ $M\gtrsim 250~{\rm GeV}$ (provided there is some motivation for such models)
- Update $A_P(\Lambda_b^0)$ measurement with at least full Run-1 dataset (currently stat. limited)
- Charm-Quark Asymmetry?

Backup Slides

Christopher W. Murphy (SNS)

LHCb Implications 23 / 29

3

・ロト ・個ト ・ヨト ・ヨト

Charm-Quark Asymmetry

Z-pole asymmetry about half as big as $b\bar{b}$ case:

$$\frac{\tilde{N}_{0,c\bar{c}}}{\tilde{N}_{0,b\bar{b}}} \sim \frac{3 - 8s_W^2}{3 - 4s_W^2} \approx 0.55$$

t-channel W exchange – less CKM suppression than $b\bar{b}$, $t\bar{t}$:

LHCb Implications

LHCb $A_{FC}^{b\bar{b}}$ Results & Future Prospects

CM 1504.02493

BSM Future Prospects

- Lighter mass BSM $(M \lesssim 250 \text{ GeV})$ already constrained by Tevatron + LHC7
- More data useful for constraining heavier mass scenarios
- Distinguish flavor structure of competing BSM scenarios

Hadron Asymmetry Measurements

- Perturbative calculation not always relevant
- MC generators not always accurate (worse for $A_{FB}(\Lambda_b^0)$)

$$A_{FB}(B^{\pm})$$

Christopher W. Murphy (SNS)

 $A_{FC}^{b\bar{b}}$ at LHCb

 $A_P(\Lambda_h^0)$

Production and CP Asymmetries at LHCb

Production asymmetry can mimic CP violation

$$A(t) \approx A_{CP} + A_D + A_P \frac{\cos(\Delta m t)}{\cosh(\Delta \Gamma t/2)}$$

$$A_{CP} = \frac{\Gamma(B^0 \to f) - \Gamma(B^0 \to f)}{\Gamma(\bar{B}^0 \to \bar{f}) + \Gamma(B^0 \to f)}, \quad A_D = \frac{\epsilon_{\bar{f}} - \epsilon_f}{\epsilon_{\bar{f}} + \epsilon_f}, \quad A_P = \frac{N(B^0) - N(B^0)}{N(\bar{B}^0) + N(B^0)}$$

Measure instead $\Delta A_{CP} = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+); A_D, A_P$ cancel

Lepton A_{FB} in $B^0 \to K^{*0} \mu^+ \mu^-$ at LHCb

Forward-Backward Asymmetry of Decay Products

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta_\ell \mathrm{d}\cos\theta_K \mathrm{d}\hat{\phi}} = \frac{9}{16\pi} \begin{bmatrix} F_{\mathrm{L}}\cos^2\theta_K + \frac{3}{4}(1 - F_{\mathrm{L}})(1 - \cos^2\theta_K) & - \\ F_{\mathrm{L}}\cos^2\theta_K(2\cos^2\theta_\ell - 1) & + \\ \frac{1}{4}(1 - F_{\mathrm{L}})(1 - \cos^2\theta_K)(2\cos^2\theta_\ell - 1) & + \\ S_3(1 - \cos^2\theta_K)(1 - \cos^2\theta_\ell)\cos 2\hat{\phi} & + \\ \frac{4}{3}A_{\mathrm{FB}}(1 - \cos^2\theta_K)\cos \theta_\ell & + \\ A_9(1 - \cos^2\theta_K)(1 - \cos^2\theta_\ell)\sin 2\hat{\phi} \end{bmatrix} .$$

$$R_K = \frac{\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^+ \to K^+ e^+ e^-)} R_K = 0.745^{+0.090}_{-0.074} \pm 0.035 R_{\mathrm{C}} R_$$

 2.6σ deviation from SM

1304.6325 (left) 1406.6482 (right)

See also talks by Martin Camalich, Petridis, Mahmoudi, 🛬

Christopher W. Murphy (SNS)

 $A_{FC}^{bar{b}}$ at LHCb

LHCb Implications

Lepton A_{FB} in $B^0 \to K^{*0} \ell^+ \ell^-$ at LHCb

- Take ratio of $A_{FB}(\mu^+\mu^-)$ vs. $A_{FB}(e^+e^-)$
- Distinguish between competing explanations of R_K

Observable	Ratio of muon vs. electron mode			
	$C_9^{\rm NP}=-1.07$	-1.10	-0.53	-1.06
	$C_9'=0$	0.45	0	0
	$C_{10}^{\rm NP}=0$	0	0.53	0.16
$10^7 \frac{dBR}{dq^2} (\bar{B}^0 \to \bar{K}^{*0} \ell^+ \ell^-)_{[1,6]}$	0.83	0.77	0.77	0.79
$10^7 \frac{dBR}{dq^2} (\bar{B}^0 \to \bar{K}^{*0} \ell^+ \ell^-)_{[15,19]}$	0.78	0.72	0.75	0.74
$F_L(\bar{B}^0 \to \bar{K}^{*0} \ell^+ \ell^-)_{[1,6]}$	0.93	0.90	0.98	0.93
$F_L(\bar{B}^0 \to \bar{K}^{*0} \ell^+ \ell^-)_{[15,19]}$	1.00	0.97	1.00	1.00
$A_{\rm FB}(\bar{B}^0 \to \bar{K}^{*0} \ell^+ \ell^-)_{[4,6]}$	0.33	0.33	0.74	0.35
$A_{\rm FB}(\bar{B}^0 \to \bar{K}^{*0} \ell^+ \ell^-)_{[15,19]}$	0.90	0.96	0.99	0.92

Altmannshofer, Straub 1411.3161 See also talks by Martin Camalich, Petridis, Mahmoudi, ...

Christopher W. Murphy (SNS)

 $A_{FC}^{b\bar{b}}$ at LHCb

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで LHCb Implications