Bottom-Quark Forward-Central Asymmetry at LHCb

Christopher W. Murphy

Pisa, Scuola Normale Superiore

Implications of LHCb measurements and future prospects – 13/10/2016
Outline

This talk:

(1) Introduction

(2) Theoretical Predictions

(3) Current Experimental Results

Next talk by Rhorry Gauld:

(4) Future Prospects

Million dollar question:
- What lies Beyond the Standard Model (BSM)?

Measuring asymmetries (forward-backward, CP, forward-central, production, forward-backward of decay products, ...) helps to answer this question.

\[A(x) \equiv \frac{N(x > 0) - N(x < 0)}{N(x > 0) + N(x < 0)} \]

precision predictions / small SM values \rightarrow excellent probe of BSM
Million dollar question:
- What lies Beyond the Standard Model (BSM)?

Measuring asymmetries (forward-backward, \(CP\), forward-central, production, forward-backward of decay products, \ldots) helps to answer this question.

\[
A(x) \equiv \frac{N(x > 0) - N(x < 0)}{N(x > 0) + N(x < 0)}
\]

- precision predictions / small SM values → excellent probe of BSM
Forward-Backward Asymmetries

Collider w/ asymmetric initial state \((e^+e^-, p\bar{p})\):

\[
A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}
\]

Example:
- \(e^-e^+ \rightarrow Q\bar{Q}\)
- \(\Delta y = y_Q - y_{\bar{Q}}\)
Forward-Backward Asymmetries

LEP 1 – $A_{FB}^{(0,b)}$ (Z-pole) – 2.3σ

CDF – $A_{FB}^{t\bar{t}}$ ($M_{tt} > 450$ GeV) – 3.4σ

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Standard Model</th>
<th>Pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_Z [GeV]</td>
<td>91.1876 ± 0.0021</td>
<td>91.1880 ± 0.0020</td>
<td>-0.2</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4952 ± 0.0023</td>
<td>2.4955 ± 0.0009</td>
<td>-0.1</td>
</tr>
<tr>
<td>Γ(had) [GeV]</td>
<td>1.7444 ± 0.0020</td>
<td>1.7420 ± 0.0008</td>
<td>—</td>
</tr>
<tr>
<td>Γ(inv) [MeV]</td>
<td>499.0 ± 1.5</td>
<td>501.66 ± 0.05</td>
<td>—</td>
</tr>
<tr>
<td>$\Gamma(\ell^+\ell^-)$ [MeV]</td>
<td>83.984 ± 0.086</td>
<td>83.995 ± 0.010</td>
<td>—</td>
</tr>
<tr>
<td>$\sigma_{had}[fb]$</td>
<td>41.541 ± 0.037</td>
<td>41.479 ± 0.008</td>
<td>1.7</td>
</tr>
<tr>
<td>R_e</td>
<td>20.804 ± 0.050</td>
<td>20.740 ± 0.010</td>
<td>1.3</td>
</tr>
<tr>
<td>R_μ</td>
<td>20.785 ± 0.033</td>
<td>20.740 ± 0.010</td>
<td>1.4</td>
</tr>
<tr>
<td>R_τ</td>
<td>20.764 ± 0.045</td>
<td>20.785 ± 0.010</td>
<td>-0.5</td>
</tr>
<tr>
<td>R_b</td>
<td>0.21629 ± 0.00066</td>
<td>0.21576 ± 0.00003</td>
<td>0.8</td>
</tr>
<tr>
<td>R_c</td>
<td>0.1721 ± 0.0030</td>
<td>0.17226 ± 0.00003</td>
<td>-0.1</td>
</tr>
<tr>
<td>$A_{FB}^{(0,e)}$</td>
<td>0.0145 ± 0.0025</td>
<td>0.01616 ± 0.00008</td>
<td>-0.7</td>
</tr>
<tr>
<td>$A_{FB}^{(0,\mu)}$</td>
<td>0.0169 ± 0.0013</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}^{(0,\tau)}$</td>
<td>0.0188 ± 0.0017</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>$A_{FB}^{(0,b)}$</td>
<td>0.0992 ± 0.0016</td>
<td>0.1029 ± 0.0003</td>
<td>-2.3</td>
</tr>
<tr>
<td>$A_{FB}^{(0,c)}$</td>
<td>0.0702 ± 0.0035</td>
<td>0.0735 ± 0.0002</td>
<td>-0.8</td>
</tr>
<tr>
<td>$A_{FB}^{(0,s)}$</td>
<td>0.0976 ± 0.0114</td>
<td>0.1030 ± 0.0003</td>
<td>-0.5</td>
</tr>
<tr>
<td>$s_{t\bar{t}}$</td>
<td>0.2324 ± 0.0012</td>
<td>0.23155 ± 0.00005</td>
<td>0.7</td>
</tr>
</tbody>
</table>

PDG

CDF arXiv:1101.0034
Forward-Backward Asymmetries

LEP 1 – $A_{FB}^{(0,b)} (Z$-pole) – 2.3σ

- No significant excess w.r.t. SM
- Agreement not perfect

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Standard Model</th>
<th>Pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_Z [GeV]</td>
<td>91.1876 ± 0.0021</td>
<td>91.1880 ± 0.0020</td>
<td>−0.2</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4952 ± 0.0023</td>
<td>2.4955 ± 0.0009</td>
<td>−0.1</td>
</tr>
<tr>
<td>Γ(had) [GeV]</td>
<td>1.7444 ± 0.0020</td>
<td>1.7420 ± 0.0008</td>
<td>—</td>
</tr>
<tr>
<td>Γ(inv) [MeV]</td>
<td>499.0 ± 1.5</td>
<td>501.66 ± 0.05</td>
<td>—</td>
</tr>
<tr>
<td>$\Gamma(f^+f^-)$ [MeV]</td>
<td>83.984 ± 0.086</td>
<td>83.995 ± 0.010</td>
<td>—</td>
</tr>
<tr>
<td>$\sigma_{had}[nb]$</td>
<td>41.541 ± 0.037</td>
<td>41.479 ± 0.008</td>
<td>1.7</td>
</tr>
<tr>
<td>R_e</td>
<td>20.804 ± 0.050</td>
<td>20.740 ± 0.010</td>
<td>1.3</td>
</tr>
<tr>
<td>R_μ</td>
<td>20.785 ± 0.033</td>
<td>20.740 ± 0.010</td>
<td>1.4</td>
</tr>
<tr>
<td>R_τ</td>
<td>20.764 ± 0.045</td>
<td>20.785 ± 0.010</td>
<td>−0.5</td>
</tr>
<tr>
<td>R_b</td>
<td>0.21629 ± 0.00066</td>
<td>0.21576 ± 0.00003</td>
<td>0.8</td>
</tr>
<tr>
<td>R_c</td>
<td>0.1721 ± 0.0030</td>
<td>0.17226 ± 0.00003</td>
<td>−0.1</td>
</tr>
<tr>
<td>$A_{FB}^{(0,e)}$</td>
<td>0.0145 ± 0.0025</td>
<td>0.01616 ± 0.00008</td>
<td>−0.7</td>
</tr>
<tr>
<td>$A_{FB}^{(0,\mu)}$</td>
<td>0.0169 ± 0.0013</td>
<td>—</td>
<td>0.6</td>
</tr>
<tr>
<td>$A_{FB}^{(0,\tau)}$</td>
<td>0.0188 ± 0.0017</td>
<td>—</td>
<td>1.6</td>
</tr>
<tr>
<td>$A_{FB}^{(0,b)}$</td>
<td>0.0992 ± 0.0016</td>
<td>0.1029 ± 0.0003</td>
<td>−2.3</td>
</tr>
<tr>
<td>$A_{FB}^{(0,c)}$</td>
<td>0.0707 ± 0.0035</td>
<td>0.0735 ± 0.0002</td>
<td>−0.8</td>
</tr>
<tr>
<td>$A_{FB}^{(0,s)}$</td>
<td>0.0976 ± 0.0114</td>
<td>0.1030 ± 0.0003</td>
<td>−0.5</td>
</tr>
<tr>
<td>\bar{s}_t^2</td>
<td>0.2324 ± 0.0012</td>
<td>0.23155 ± 0.00005</td>
<td>0.7</td>
</tr>
</tbody>
</table>
What is the Source of A_{FB}?

Quark asymmetries hint at physics beyond the Standard Model

3 years ago by davidreiss666
21 comments share

All 21 Comments

sorted by: best (suggested)

[-] hikaruzero 1 7 points 3 years ago*

Why should there be any asymmetry at all, even in the Standard Model? Anybody who's up on their science care to elaborate?

Edit: I realize I worded the above question pretty vaguely, so for anyone else who wants to take a stab, please see a revised question below:

What is the source of the forwards-backwards asymmetry that is predicted by the Standard Model? For example, is this due to neutral particle oscillation in briefly-existing B+B-bar systems, or due to the CP-violating phase in the CKM matrix, etc.?

2nd Edit: I was given the answer by one of the paper's authors! Check it out!

permalink embed
What is the Source of A_{FB}?

Quark asymmetries hint at physics beyond the Standard Model

Christopher W. Murphy (SNS) LHCb Implications 9 / 29

All 21 Comments

sorted by: best (suggested)

[-] hikaruzero 7 points 3 years ago*

Why should there be any asymmetry at all, even in the SM? I will need to elaborate.

Edit: I realize I worded the above question pretty vague; how about this revised question below:

What is the source of the forwards-backwards asymmetry? Is this due to neutral particle oscillation in briefly-existing b-\bar{b} states, CPT matrix, etc.?

2nd Edit: I was given the answer by one of the paper authors.

[-] bgrinstein 2 points 3 years ago

I can explain:"why" there is a FB asymmetry. (I should, I am one of the authors of the paper being reported here). But it takes more than a couple of lines. So I prepared a web page for this. Visit:

http://leewick.ucsd.edu/~ben/FBAsymmetry/Blank.html

Christopher W. Murphy (SNS) A$^{b\bar{b}}_{FC}$ at LHCb
What is the Source of A_{FB}?

(1) Kinematics – need odd powers of $\cos \theta$ in $d\sigma$

- Spin-0: $P_0(\cos \theta)$
- Spin-1: $P_{0,1,2}(\cos \theta)$
- t-channel: $P_{\text{all}}(\cos \theta)$

Interference between 1- and 2-photon/gluon exchange

$d\sigma$ odd in $\cos \theta$ by C-conjugation invariance

Fig. from Kühn, Rodrigo hep-ph/9807420

Fig. from CDF Conf. Note 10974
What is the Source of A_{FB}?

(2) (non-)symmetries (gauge, discrete) of theory

\[\frac{d\sigma}{d\Omega}(q_{L\bar{q}_R} \rightarrow V_\mu \rightarrow Q_L \bar{Q}_R) \sim g_{Lq}^2 g_{LQ}^2 (1 + \cos \theta)^2 \]

Parity violation \rightarrow tree level A_{FC}

$U(1), SU(N \geq 3) \rightarrow A_{FC}$ at NLO

Fig. from Kühn, Rodrigo hep-ph/9807420
Heavy Quark A_{FB} at Hadron Colliders

Contributions to asymmetry:
- LEP – directly sensitive to asymmetry from matrix elements
- Tevatron – matrix elements and PDFs must be asymmetric

Extracting a heavy quark asymmetry:
- tt: decay products preserve info about A_{FB}^{tt}
- $b\bar{b}, c\bar{c}$: hadronize before decaying
 - Hadron based: $p\bar{p} \rightarrow B^\pm X$ w/ $q_{FB} = -Q_B \text{sign}(\eta_B)$
 \[
 A_{FB}(B^\pm) = \frac{N(q_{FB} > 0) - N(q_{FB} < 0)}{N(q_{FB} > 0) + N(q_{FB} < 0)}
 \]
 - Jet based: $p\bar{p} \rightarrow b\bar{b}X$ w/ $\Delta y = y_b - y_{\bar{b}}$
 \[
 A_{FB}^{b\bar{b}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}
 \]
What about at LHCb?

- LHC: symmetric initial state
 - \(A_{FB} = 0 \) by construction
 - underlying matrix elements still asymmetric
 - exploit asymmetry between PDFs of \(q \) and \(\bar{q} \)

- Hadron based: \(pp \to B^\pm X \) – production asymmetry
 \[
 A_P(B^\pm) = \frac{N(B^-) - N(B^+)}{N(B^-) + N(B^+)}
 \]

- Jet based: \(pp \to b\bar{b}X \) – forward-central asymmetry
 \[
 A_{b\bar{b}}^{FC} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}
 \]
 now with \(\Delta|y| = |y_b| - |y_{\bar{b}}| \)
\(A_{FC} \) in the Standard Model

\[
A_{FC} \sim \frac{\alpha^2 \tilde{N}_0 + \alpha_3^3 N_1 + \alpha_3^2 \alpha \tilde{N}_1 + \alpha_4^4 N_2 + \cdots}{\alpha^2 \tilde{D}_0 + \alpha_2^2 D_0 + \alpha_3^3 D_1 + \alpha_2^2 \alpha \tilde{D}_1 + \cdots}
\]

- NLO QCD dominant contribution to \(A^{\bar{t}t}_{FB} \) at hadron colliders
 \((\sim \alpha_s N_1/D_0 + \cdots)\)

- Grinstein, CM 1302.6995 showed previously neglected tree level \(Z \) exchange dominates \(A^{b\bar{b}}_{\bar{F}B,FC} \) for \(M_{b\bar{b}} \sim M_Z \)

- \(Z \) can decay to \(b\bar{b}, c\bar{c} \) (but not \(t\bar{t} \)) → resonant enhancement
 \((Z - \gamma \) interference not enhanced)\)

- Gauld et al. 1505.02429: \(Z \) contribution to \(\tilde{N}_1 \) (not enhanced),
 \(O(\alpha^2 \alpha_s) \) corrections, \(qg \) initiated asymmetry \((\sim 10\% \text{ of } N_1, \text{ unlike } t\bar{t} \text{ case})\)
A_{FC} in the Standard Model

$$A_{FC} \sim \frac{\alpha^2 \tilde{N}_0 + \alpha_s^3 N_1 + \alpha_s^2 \alpha \tilde{N}_1 + \alpha_s^4 N_2 + \cdots}{\alpha^2 \tilde{D}_0 + \alpha_s^2 D_0 + \alpha_s^3 D_1 + \alpha_s^2 \alpha \tilde{D}_1 + \cdots}$$

- NLO QCD dominant contribution to $A_{FB}^{t\bar{t}}$ at hadron colliders ($\sim \alpha_s N_1 / D_0 + \cdots$)
- Grinstein, CM 1302.6995 showed previously neglected tree level Z exchange dominates $A_{FB}^{b\bar{b}}$ for $M_{b\bar{b}} \sim M_Z$
- Z can decay to $b\bar{b}$, $c\bar{c}$ (but not $t\bar{t}$) → resonant enhancement ($Z - \gamma$ interference not enhanced)
- Gauld et al. 1505.02429: Z contribution to \tilde{N}_1 (not enhanced), $O(\alpha^2 \alpha_s)$ corrections, qg initiated asymmetry ($\sim 10\%$ of N_1, unlike $t\bar{t}$ case)
CDF $A_{FB}^{b\bar{b}}$ Results

Low Mass Analysis 1601.06526

High Mass Analysis 1504.06888

SM predictions from CM 1504.02493

Christopher W. Murphy (SNS)
LHCb 7 TeV $A^{b\bar{b}}_{FC}$ Results

Shape of SM prediction drastically different w/o EW terms

Fig. & SM predictions from Gauld, Haisch, Pecjak, Re 1505.02429; LHCb results from 1406.4789

Christopher W. Murphy (SNS)
LHCb $A_{\bar{b}b}^{FC}$ Results & Future Prospects

SM Future Prospects

- $A_{\bar{b}b}^{FC}$ becomes systematically limited around $\sim 10 \text{ fb}^{-1}$
- Central value smaller at 13/14 TeV than 7/8 TeV (even smaller for 100 TeV)
- $A_{\bar{b}b}^{FC}(Z\text{-pole})$ currently non-zero at 1.8σ
 - 3.0σ w/ 10 fb$^{-1}$ & same central value
 - 1.7σ w/ 10 fb$^{-1}$ & 13 TeV SM central value

Fig. & SM predictions from Gauld et al. 1505.02429; LHCb results from 1406.4789
BSM Future Prospects

- Lighter mass BSM ($M \lesssim 250$ GeV) already constrained by Tevatron + LHC7
- More data useful for constraining heavier BSM scenarios
- Distinguish flavor structure of competing BSM models

Grinstein, CM 1302.6995; CM 1504.02493
Modified $Zb\bar{b}$ Couplings

- Current hadron collider results not competitive w/ LEP
- See next talk by Rhorry for future prospects

![Graph showing modified couplings](image)

CM 1504.02493
Production asymmetry can mimic CP violation

\[A(t) \approx A_{CP} + A_D + A_P \frac{\cos(\Delta m t)}{\cosh(\Delta \Gamma t / 2)} \]

\[A_{CP} = \frac{\Gamma(\overline{B}_0^0 \to \bar{f}) - \Gamma(B^0 \to f)}{\Gamma(\overline{B}_0^0 \to \bar{f}) + \Gamma(B^0 \to f)}, \quad A_D = \frac{\epsilon_{\bar{f}} - \epsilon_f}{\epsilon_{\bar{f}} + \epsilon_f}, \quad A_P = \frac{N(\overline{B}_0^0) - N(B^0)}{N(\overline{B}_0^0) + N(B^0)} \]

- $A_P(D_{s}^{\pm}) = (-0.33 \pm 0.22 \pm 0.10)\%$ 1205.0897
- $A_P(D^{\pm}) = (-0.96 \pm 0.26 \pm 0.18)\%$ 1210.4112
- $A_P(B_{0}^0) = (-0.35 \pm 0.76 \pm 0.28)\%$ 1408.0275
- $A_P(B_{s}^0) = (1.09 \pm 2.61 \pm 0.66)\%$ 1408.0275
Production Asymmetries at LHCb

Production asymmetry can mimic CP violation

$$A(t) \approx A_{CP} + A_D + A_P \frac{\cos(\Delta m t)}{\cosh(\Delta \Gamma t/2)}$$

$$A_{CP} = \frac{\Gamma(\bar{B}^0 \to \bar{f}) - \Gamma(B^0 \to f)}{\Gamma(\bar{B}^0 \to \bar{f}) + \Gamma(B^0 \to f)}, \quad A_D = \frac{\epsilon_{\bar{f}} - \epsilon_f}{\epsilon_{\bar{f}} + \epsilon_f}, \quad A_P = \frac{N(\bar{B}^0) - N(B^0)}{N(\bar{B}^0) + N(B^0)}$$

LHCb-CONF-2012-031

- Reports $\sigma(pp \to \Lambda^0_b X)$ and $\sigma(pp \to \bar{\Lambda}^0_b X)$
- $A_P(\Lambda^0_b) = (-0.23 \pm 0.13)\%$ w/ 36.4 pb$^{-1}$
- $A_P(\Lambda^0_b) = (-0.23 \pm 0.06)\%$ (naïvely) w/ full Run-1 dataset, non-zero at 3.4σ
Measuring a more significant non-zero asymmetry at 13/14 TeV (w.r.t. 7 TeV) naïvely requires improved systematics or undiscovered BSM.

More data useful for constraining BSM scenarios with $M \gtrsim 250$ GeV (provided there is some motivation for such models).

Update $A_P(\Lambda_b^0)$ measurement with at least full Run-1 dataset (currently stat. limited).

Charm-Quark Asymmetry?
Charm-Quark Asymmetry

Z-pole asymmetry about half as big as $b\bar{b}$ case:

$$\frac{\tilde{N}_{0,c\bar{c}}}{\tilde{N}_{0,b\bar{b}}} \sim \frac{3 - 8s^2_W}{3 - 4s^2_W} \approx 0.55$$

t-channel W exchange – less CKM suppression than $b\bar{b}$, $t\bar{t}$:

$$\frac{d\sigma_{A}^{\alpha_s \alpha}}{d \cos \theta} = -\frac{\alpha_s \alpha |V_{cd}|^2}{s^2_W} \frac{\pi C_F}{N_C} \frac{\beta \cos \theta}{8\hat{s}} f(\cos^2 \theta, m^2_c, M^2_W, \hat{s})$$

$\sim -6\%$ of NLO QCD contribution to $A_{F_C}^{c\bar{c}}$ at large $M_{c\bar{c}}$ CM 1504.02493
BSM Future Prospects

- Lighter mass BSM ($M \lesssim 250$GeV) already constrained by Tevatron + LHC7
- More data useful for constraining heavier mass scenarios
- Distinguish flavor structure of competing BSM scenarios

CM 1504.02493
Hadron Asymmetry Measurements

- Perturbative calculation not always relevant
- MC generators not always accurate (worse for $A_{FB}(Λ^0_b)$)

$$A_{FB}(B^±) \quad A_P(Λ^0_b)$$

D0 1411.3021; CM 1504.02493

MC seems fine here
LHCb-CONF-2012-031

Christopher W. Murphy (SNS)
Production and CP Asymmetries at LHCb

Production asymmetry can mimic CP violation

$$A(t) \approx A_{CP} + A_D + A_P \frac{\cos(\Delta m t)}{\cosh(\Delta \Gamma t/2)}$$

$$A_{CP} = \frac{\Gamma(\bar{B}^0 \to \bar{f}) - \Gamma(B^0 \to f)}{\Gamma(\bar{B}^0 \to \bar{f}) + \Gamma(B^0 \to f)}, \quad A_D = \frac{\epsilon_{\bar{f}} - \epsilon_f}{\epsilon_{\bar{f}} + \epsilon_f}, \quad A_P = \frac{N(\bar{B}^0) - N(B^0)}{N(\bar{B}^0) + N(B^0)}$$

Measure instead $\Delta A_{CP} = A_{CP}(K^- K^+) - A_{CP}(\pi^- \pi^+)$; A_D, A_P cancel

1112.0938 See also talks by Petridis, de Boer, Davis, ...
Lepton A_{FB} in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ at LHCb

Forward-Backward Asymmetry of Decay Products

$$\frac{1}{d\Gamma/dq^2 dq^2 d\cos \theta_\ell d\cos \theta_K d\phi} = \frac{9}{16\pi} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L)(1 - \cos^2 \theta_K) - F_L \cos^2 \theta_K (2 \cos^2 \theta_\ell - 1) + \frac{1}{4} (1 - F_L)(1 - \cos^2 \theta_K)(2 \cos^2 \theta_\ell - 1) + S_3 (1 - \cos^2 \theta_K)(1 - \cos^2 \theta_\ell) \cos 2\phi + \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) \cos \theta_\ell + A_9 (1 - \cos^2 \theta_K)(1 - \cos^2 \theta_\ell) \sin 2\phi \right] .$$

$$R_K = \frac{\Gamma(B^+ \rightarrow K^+ \mu^+ \mu^-)}{\Gamma(B^+ \rightarrow K^+ e^+ e^-)}$$

$$R_K = 0.745^{+0.090}_{-0.074} \pm 0.035$$

$$M_{\ell^+ \ell^-}^2 \in [1, 6] \text{ GeV}^2$$

2.6σ deviation from SM

1304.6325 (left)
1406.6482 (right)

See also talks by Martin Camalich, Petridis, Mahmoudi, ...
Lepton A_{FB} in $B^0 \rightarrow K^{*0} \ell^+ \ell^-$ at LHCb

- Take ratio of $A_{FB}(\mu^+\mu^-)$ vs. $A_{FB}(e^+e^-)$
- Distinguish between competing explanations of R_K

<table>
<thead>
<tr>
<th>Observable</th>
<th>Ratio of muon vs. electron mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_9^{NP} = -1.07$</td>
<td>-1.10</td>
</tr>
<tr>
<td>$C_9' = 0$</td>
<td>0.45</td>
</tr>
<tr>
<td>$C_9^{NP} = 0$</td>
<td>0</td>
</tr>
<tr>
<td>$10^7 \frac{dBR}{dq^2} (\bar{B}^0 \rightarrow \bar{K}^{*0} \ell^+ \ell^-)_{[1,6]}$</td>
<td>0.83</td>
</tr>
<tr>
<td>$10^7 \frac{dBR}{dq^2} (\bar{B}^0 \rightarrow \bar{K}^{*0} \ell^+ \ell^-)_{[15,19]}$</td>
<td>0.78</td>
</tr>
<tr>
<td>$F_L(\bar{B}^0 \rightarrow \bar{K}^{*0} \ell^+ \ell^-)_{[1,6]}$</td>
<td>0.93</td>
</tr>
<tr>
<td>$F_L(\bar{B}^0 \rightarrow \bar{K}^{*0} \ell^+ \ell^-)_{[15,19]}$</td>
<td>1.00</td>
</tr>
<tr>
<td>$A_{FB}(\bar{B}^0 \rightarrow \bar{K}^{*0} \ell^+ \ell^-)_{[4,6]}$</td>
<td>0.33</td>
</tr>
<tr>
<td>$A_{FB}(\bar{B}^0 \rightarrow \bar{K}^{*0} \ell^+ \ell^-)_{[15,19]}$</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Altmannshofer, Straub 1411.3161

See also talks by Martin Camalich, Petridis, Mahmoudi, . . .