

SUSY(-like) searches at LHCb

Oscar Augusto on behalf of the LHCb Collaboration

CERN/CNPq attached to Liverpool

Implications of LHCb measurements and future prospects

CERN

13/10/16

Outlook

Introduction

LHCb experiment

This talk will cover

- <u>arXiv:1609.03124</u> [hep-ex] (Submitted to the EPJ C) Search for higgs-like bosons decaying into long-lived particles
- LHCb-PAPER-2016-047 in preparation Search for exotic massive particles decaying semileptonically
- <u>Eur. Phys. J. C 75 (2015) 595</u> Search for heavy charged long-lived particles using RICH
- LHCB-CONF-2016-006 Search for the SM Higgs boson decaying in $b\bar{b}$ or $c\bar{c}$ in association with W or Z boson

Conclusion

LHCb experiment

Excellent vertex reconstruction

- for a primary vertex (PV) with 25 tracks:
 - $\sigma_{PV_z} = 71 \, \mu \text{m}$
 - $\sigma_{PV_T} = 13 \, \mu \text{m}$

Great particle identification

Flexible trigger readout (Run III)

Luminosity collected in the Run I:

- $\sim 1 \text{ fb}^{-1} \text{ in 2011}$
- $\sim 2 \text{ fb}^{-1} \text{ in } 2012$

How long-lived?

- Up to $\sim 1m$, the decay will be inside the Vertex detector
- Up to $\sim 2m$, before the first tracking station (TT)
- More than $\sim 20m$, it will pass through all the detectors

Submitted to EPJ C

Benchmark model: MSSM mSUGRA with baryon number violation [JHEP **10** (2007) 056, JHEP **07** (2012) 149]

The small baryon violation allow the lightest supersymmetric particle to decay to standard model particles ($\chi^0 \to q \bar{q} \bar{q}$)

The topology considered is $h^0 \to \chi^0 \chi^0$ where the χ^0 is the LLP

Search based on the reconstruction of the displaced vertex

Search strategy

- Higgs mass particle from 80 GeV to 140 GeV
- $\tau_{LLP} = 5-100$ ps (up to 30 cm flight distance in average)
- $M_{LLP} = 20 60 \text{ GeV}$

[GeV/c]

10

arXiv:1609.03124 [hep-ex]
Submitted to EPJ C

Main source of background comes from $b\overline{b}$ events

The observed yield corresponds to 1.8 ± 0.5 times the expected yield using the $b\bar{b}$ cross section measured at the LHCb $(288 \pm 4 \pm 48 \ \mu b)$.

Only 37 events survives the preselection of $17.1 \times 10^6 \ b\overline{b}$ events which corresponds to na integrated luminosity of $0.3 \ pb^{-1}$.

30

LLP number of tracks

arXiv:1609.03124 [hep-ex]
Submitted to EPJ C

Selection	N_{min}^{track}	$m_{min}^{LLP} ext{[GeV]}$	σ_{max}^R [mm]	$\sigma_{max}^{Z}[mm]$
Final	6	6	0.05	0.25
Background from data	4	4	-	-

Search for exotic massive particles decaying semileptonically

Benchmark model: MSSM mSUGRA with R-parity violation [Phys. Rev. D69 (2014) 115002]

The neutralino is a LLP that decays into $\chi^0 \to lq\bar{q}$

Four productions mechanisms are considered

Search strategy

- Displaced vertex reconstruction
- Higgs mass particle from 50 GeV to 130 GeV
- $\tau_{LLP} = 5-100$ ps (up to 30 cm flight distance in average)
- $M_{LLP} = 20 200 \,\text{GeV}$

semileptonically

Entries / (1.5 GeV/c^2

20

Data – Fit: total

preliminary

LHCb

LLP mass

background

[GeV/c²]

MVA (NN) is used to purify the data with the inputs: σ_{DVR} , σ_{DVZ} , $p_{T\mu}$, $IPPV_{\mu}$ and R_{DV}

Data-driven method to obtain the shape of the background based in the muon isolation

$$I_{\mu} = E_{\mu}/E_{tracks in R < 0.3}$$

Background selection: $1.4 < I_{\mu} < 2$

Signal selection: $I_{\mu} > 1.4$

Pre-selection: $p_{T_{II}} > 12.5 \text{ GeV}$

 $IPPV_{u} > 0.25 \text{ mm}$

All signal yields are compatible with zero.

Search for exotic massive particles decaying semileptonically

Search for heavy charged long-lived particles using RICH

Benchmark model: minimal gaugemediated supersymmetry breaking (mGMSB SPS7)

[arXiv:hep-ph/9609434 , arXiv:hep-ph/9801271, arXiv:hep-ph/0202233v1]

- For a particular range of parameter the next-to-LSP can be a long-lived $\tilde{\tau}$ with a mass of order of 100 GeV
- LLP is charged massive stable particle (CMSP) that can travel through all detectors without decaying
- This analysis considers that the CMSP is produced by a Drell-Yan mechanism

Track reconstruction efficiency

The efficiency drops to nearly zero for values below $\beta < 0.8$. The delay in this case becomes \sim 12.5 ns for the last muon chamber.

Search for heavy charged long-lived particles

using RICH

- Only candidates with momenta above 200 GeV are considered
- DLLx was designed to identify high momentum particles that don't radiate in the RICHs or have a small radiation angle that doesn't fit with the p, π , e, μ and K hypothesis
 - High DLLx indicates that the candidates has relatively low velocity
 - Most discriminant variable
- These four variables are inputs to an Artificial Neural Network (ANN)
 - optimized to achieve 95% efficiency in the final selection

Search for heavy charged long-lived particles using RICH

 95% CL on the cross section pair production of CMSPs in the LHCb acceptance

Search for the SM Higgs boson decaying in $b\bar{b}$ or $c\bar{c}$ in association with W or Z boson

LHCB-CONF-2016-006

- Extension of the $t\bar{t}$, $W+b\bar{b}$ and $W+c\bar{c}$ analysis (See Katharina's talk for more details)
- Enhanced $H(c\bar{c})$ might be a source of new physics
- Additional requirements:
 - Z/W decays into muons or electrons
 - 20 GeV $< p_T^j$
 - $70 \text{ GeV} < M_{ii} < 150 \text{ GeV}$ (Higgs mass window)
 - Isolated leptons and jets ($\Delta R > 0.5$)
- For the Z/W+H($c\bar{c}$), an additional requirement is applied to the BDT(b|c)
 - ~90% of $Z/W + H(b\bar{b})$ is removed
 - ~60% of $Z/W + H(c\bar{c})$ is retained
- No significant excess was found with respect to the backgrounds
- The limits were set:

$$\sigma[WZ + H^0(c\bar{c})] < 9.4 \ pb \ at 95 \% \ CL \ (6200 \times SM)$$

 $\sigma[WZ + H^0(b\bar{b})] < 1.6 \ pb \ at 95 \% \ CL \ (50 \times SM)$

Z/W+H($b\bar{b}$) distributions with μ in the final state

Conclusion

LHCb

- Efficient displaced vertex reconstruction
 - Complementary region with respect to ATLAS and CMS
- Good particle identification
 - Additional suggestions are welcome!
- Powerful heavy jet tagging

More analysis at LHCb

- Eur. Phys. J. C 75 (2015) 152 Search for long-lived particles decaying to jet pairs (Update on going)
- <u>Phys. Lett. B 724 (2013) 36-45</u> Searches for violation of lepton flavour and baryon number in tau lepton decays at LHCb

More data to come

- $\sim 5 \text{ fb}^{-1}$ in Run II
- 50 fb⁻¹ in Run III (will start in 2021 after the LHCb Upgrade)

Backup slides

 Benchmark model: MSSM mSUGRA with barion number violation

[JHEP **10** (2007) 056, JHEP **07** (2012) 149]

- $h^0 \to \chi^0 \chi^0$ with $\chi^0 \to q \overline{q} \overline{q}$
- χ^0 is an LLP
- $\sim 70\%$ contains a b quark in the decay
- Higgs mass particle from 80 GeV to 140 GeV
- $\tau_{LLP} = 5-100$ ps (up to 30 cm flight distance in average)
- $M_{IJP} = 20 60 \text{ GeV}$

Event selection:

At least one PV and two LLP candidates

LLP selection:

At least 4 forward tracks

No backwards tracks

 $M_{LLP}_1 > 3.5 \text{ GeV}$

 $M_{LLP_2} > 4.5 \text{ GeV}$

Two $R_xy_{LLP} > 0.4 \text{ mm}$

Pass the material veto

LHCb-PAPER-2016-047 In preparation

Search for exotic massive particles decaying semileptonically

Search for heavy charged long-lived particles using RICH

Table 3: Refractive indices and Cherenkov β thresholds for the three radiators. The momentum threshold is given for muons, protons, and 124 and 309 GeV/ c^2 CMSPs.

		$\beta_{ m thresh}$	$p_{\mathrm{thresh}} \; (\mathrm{GeV}/c)$			
Radiator	n		μ	p	CMSP(124)	CMSP(309)
Aerogel	1.03	0.9709	0.428	3.8	502	1252
$\mathrm{C_4F_{10}}$	1.0014	0.9985	2.00	17.7	2342	5069
CF_4	1.0005	0.9995	3.34	29.7	3921	9767

For m_{LLP} = 48 GeV, the observed upper limit is smaller than 2 pb.

Search for heavy charged long-lived particles using RICH

- The pair significance is the product of the response from the ANN
- For the final selection, this value is optimized to achieve 95% efficiency in the final selection

Identification of beauty and charm quark jets at LHCb J. Instrum. 10 (2015) P06013

Variables used for the BDT(bc|udgs) and BDT(b|c):

- the SV mass M
- the SV corrected mass (M_{corr})
- the transverse flight distance of the two-track SV closest to the PV
- the fraction of the jet p_T carried by the SV
- ΔR between the SV and the jet
- the number of tracks in the SV
- The number of tracks in the jet ($\Delta R < 0.5$)
- the net charge of the tracks that form the SV
- The flight distance χ^2
- The sum of all SV track $\chi^2(IP)$

13/10/16 Oscar Augusto