Heavy Flavour Spectroscopy and Exotic States From Lattice QCD

Graham Moir

Implications of LHCb Measurements and Future Prospects CERN, 13 October 2016

Motivation

'A modern day November revolution'

Motivation

'A modern day November revolution'

Lattice QCD in a Nutshell

$$L = \bar{\psi}(i\gamma^{\mu}D_{\mu} - m)\psi - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

- Gluons \longrightarrow SU(3) matrices ('links'): $U_{\mu}(x) = e^{-iagA^b_{\mu}(x)T^b}$
- Quarks live on 'sites' with colour, flavour and spinor indices
- **Derivatives** finite differences: $\nabla_{\mu}\psi(x) = \frac{1}{a}[U_{\mu}(x)\psi(x+a\hat{\mu})-\psi(x)]$
- Monte Carlo estimation of the path integral in a finite Euclidean space-time
- Measure desired observables . . .

Lattice QCD in a Nutshell

$$L = \bar{\psi}(i\gamma^{\mu}D_{\mu} - m)\psi - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

- Gluons \longrightarrow SU(3) matrices ('links'): $U_{\mu}(x) = e^{-iagA^b_{\mu}(x)T^b}$
- Quarks live on 'sites' with colour, flavour and spinor indices
- Derivatives finite differences: $\nabla_{\mu}\psi(x) = \frac{1}{a}[U_{\mu}(x)\psi(x+a\hat{\mu})-\psi(x)]$
- Monte Carlo estimation of the path integral in a finite Euclidean space-time
- Measure desired observables . . .

Lattice QCD in a Nutshell

$$L = \bar{\psi}(i\gamma^{\mu}D_{\mu} - m)\psi - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a}$$

- Gluons \longrightarrow SU(3) matrices ('links'): $U_{\mu}(x) = e^{-iagA^b_{\mu}(x)T^b}$
- Quarks live on 'sites' with colour, flavour and spinor indices
- Derivatives finite differences: $\nabla_{\mu}\psi(x) = \frac{1}{a}[U_{\mu}(x)\psi(x+a\hat{\mu})-\psi(x)]$
- Monte Carlo estimation of the path integral in a finite Euclidean space-time
- Measure desired observables . . .

Spectroscopic observables continued . . .

So what can we do?

- Extensive calculations for mesons and baryons
- Access to different structures and states

'Limiting cases' 'Static' heavy-quarks, (p)NRQCD

Recent calculations of 4 and 5 quark states

'Límítíng cases' 'Static' heavy-quarks, (p)NRQCD

$$\langle W(r,t) \rangle = \left\langle 0 \left| \mathcal{Q}_r \ \mathcal{T}^{t/a} \ \mathcal{Q}_r^{\dagger} \right| 0 \right\rangle$$
Wilson loop
Wilson loop
Wilson loop

 $\frac{\text{Static potential}}{V_0(r) = -\lim_{t \to \infty} \frac{d}{dt} \langle W(r, t) \rangle}$

Does the static potential become more attractive in the presence of light hadrons?

Does the static potential become more attractive in the presence of light hadrons?

$$\begin{split} \Delta V_H(r) &= V_H - V_0 \\ &= -\lim_{t \to \infty} \frac{d}{dt} \ln \left[\frac{\langle H | \mathcal{Q}_r \ \mathcal{T}^{t/a} \ \mathcal{Q}_r^{\dagger} | H \rangle}{\langle 0 | \mathcal{Q}_r \ \mathcal{T}^{t/a} \ \mathcal{Q}_r^{\dagger} | 0 \rangle} \right] \\ &= -\lim_{t \to \infty} \frac{d}{dt} \ln \left[\frac{\langle W(r,t) \ C_H^{2pt}(t+2\delta t) \rangle}{\langle W(r,t) \rangle \ \langle C_H^{2pt}(t+2\delta t) \rangle} \right] \end{split}$$

High statistics:

Ensemble:

•

- 1552 configurations
- 12 time-sources

- $M_{\pi} \approx 220 \text{ MeV}$
 - $M_K \approx 480 \text{ MeV}$

-800

0.2

0.4

0.6

 $r \, [\mathrm{fm}]$

0.8

1

1.2

• 12 time-sources

 $M_K \approx 480 \text{ MeV}$

•

Similar effects for the π , K, ρ , K^* mesons

fit

0.1

0.2

0.3

0.4

 $r \, [\mathrm{fm}]$

0.5

0.6

0.7

-10^L0

Similar effects for all octet and decouplet baryons

Similar effects for all octet and decouplet baryons

Modified potentials — Schrödinger equation:

Charmonium 1S, 1P and 2S states reduce in mass

by < 10 **MeV**

Tetra-quarks from NRQCD

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \; \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle = \sum_n A e^{-E_n t}$$

• A single 'meson-meson' type operator

• A single 'diquark-antidiquark' operator

'Single hadron spectroscopy'

Excitation spectrum of finite-volume energy eigenstates

Light quark mass dependence:

- M_{π} : 400 MeV \implies 240 MeV
- Small quantitative changes
- No qualitative changes!

The Charm Sector - Baryons

The Charm Sector - Baryons

'Lüscher formalism' $\det[t_{ij}^{-1}(E) + M_{ij}(E,L)] = 0$

Infinite-volume t-matrix —

Infinite-volume t-matrix

$$Channels \qquad formalism' det[t_{ij}^{-1}(E) + M_{ij}(E,L)] = 0$$

$$Channels \qquad Known finite-volume function$$

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_{i}(t) \right| \mathcal{O}_{j}^{\dagger}(0) \right| 0 \right\rangle = \sum_{n} Ae^{-E_{n}t}$$

Lattice QCD spectrum - infinite-volume t-matrix

The bad news:

- N channels \longrightarrow N(N+1)/2 unknowns per energy!
- Under-constrained for N > 1

A work-around:

- Parametrise the t-matrix with a 'few' free parameters
- Use >> 'few' parameters to constrain the t-matrix as a function of energy

Infinite-volume t-matrix —

$$Channels \qquad formalism' det[t_{ij}^{-1}(E) + M_{ij}(E,L)] = 0$$

$$Channels \qquad Known finite-volume function$$

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_{i}(t) \right| \mathcal{O}_{j}^{\dagger}(0) \right| 0 \right\rangle = \sum_{n} Ae^{-E_{n}t}$$

Lattice QCD spectrum — infinite-volume t-matrix

The bad news:

- N channels \longrightarrow N(N+1)/2 unknowns per energy!
- Under-constrained for N > 1

A work-around:

- Parametrise the t-matrix with a 'few' free parameters
- Use >> 'few' parameters to constrain the t-matrix as a function of energy

- Preserve Unitarity
- Examine pole content of t-matrix

0.98

0.96

-4.6

-4.8

2523

2525

2527

2529

2525

2527

2529

-4.6

-4.8

2523

Poles on all sheets with $\text{Im}[k_{D\pi}] < 0$

DK Scattering

S-wave:

- Bound-state pole $\approx 2380 \text{MeV}$; $\approx 55 \text{ MeV}$ below DK threshold (at $M_{\pi} = 391 \text{ MeV}$)
- Expt: $D_{s0}^{*}(2317) = 2317.7 \pm 0.6 \text{ MeV}$; $\approx 45 \text{ MeV}$ below *DK* threshold

DK Scattering

S-wave:

- Bound-state pole $\approx 2380 \text{MeV}$; $\approx 55 \text{ MeV}$ below DK threshold (at $M_{\pi} = 391 \text{ MeV}$)
- Expt: $D_{s0}^*(2317) = 2317.7 \pm 0.6 \text{ MeV}$; $\approx 45 \text{ MeV}$ below *DK* threshold
- c.f: S-wave pole in the $D\pi$ channel $\approx 1 \text{MeV}$ below threshold

Summary and Outlook

Lattice QCD calculations now probing exotic states and structures with heavy quarks

Summary and Outlook

Lattice QCD calculations now probing exotic states and structures with heavy quarks

Summary and Outlook

Lattice QCD calculations now probing exotic states and structures with heavy quarks

Thank you for your attention!

