Flavour Physics: Outlook

David M. Straub Universe Cluster/TUM, Munich
Disclaimer

- Not a summary of the workshop
- Not a fair representation of all interesting topics
Some lessons learned
Even beloved anomalies can go away

No signal in direct searches: underlines importance of indirect searches (but is depressing nevertheless!)

David Straub (Universe Cluster)
NP could show up in unexpected places

In lack of a clear hint of new physics, crucial to keep an open mind!
LHCb always good for a surprise

Keep suprising us!
Exploiting the apparent mass gap

If new physics is heavy, can use SM gauge symmetry to restrict form of NP, e.g.

- Relation between scalar & pseudoscalar operators in $b \to s$ transitions Alonso et al. 1407.7044
- Right-handed W coupling does not violate LFU Talk by J. Martin Camalich
- Indirect electroweak precision tests using flavour Brod et al. 1408.0792, Bobeth and Haisch 1503.04829
- Charged lepton flavour violation (without hadrons) from LFU violation Feruglio et al. 1606.00524
- ...
Is it worth going for 300 fb$^{-1}$?
Yes
Why?

- No signal in direct searches → leave no stone unturned
- $O(1)$ effects in many modes excluded → precision, precision, precision
- Plethora of (quasi-) null tests or clean observables
 - γ_{CKM} Talk by D. Johnson
 - $B_{s,d}$ mixing phases
 - T-odd CP asymmetries in $B \rightarrow V\mu^+\mu^-$ Talk by K. Petridis
 - Rare D decays Talk by S. de Boer
 - ...

- Impressive progress from LQCD Talk by M. Hansen, R. Van de Water
- Complementarity to Belle-II (Λ_b, B_s, …)
- ...

David Straub (Universe Cluster)
Status of $b \rightarrow s \mu^+ \mu^-$ anomalies
Current tensions in $b \rightarrow s\mu^+\mu^-$ transitions

<table>
<thead>
<tr>
<th>Mode</th>
<th>Observable</th>
<th>Bin</th>
<th>Pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow K^*\mu^+\mu^-$</td>
<td>P'_5</td>
<td>4–6</td>
<td>-2.6σ</td>
</tr>
<tr>
<td>$B_s \rightarrow \phi\mu^+\mu^-$</td>
<td>BR</td>
<td>1–6</td>
<td>-3.3σ</td>
</tr>
<tr>
<td>$B^+ \rightarrow K^+\mu^+\mu^-$</td>
<td>BR</td>
<td>1–6</td>
<td>-2.0σ</td>
</tr>
<tr>
<td>$B^+ \rightarrow K^+\mu^+\mu^-$</td>
<td>BR</td>
<td>15–22</td>
<td>-2.6σ</td>
</tr>
</tbody>
</table>

Suspects: New physics? Form factors? Charm loop?

(flavio v0.13.1 using combined LCSR+LQCD FFs for $B \rightarrow V$ FFs Bharucha et al. 1503.05534 and FNAL/MILC $B \rightarrow K$ FFs Bailey 1509.06235; hadronic unc. estimated as in Altmannshofer and Straub 1411.3161)
Global constraints on C_9 & C_{10}

Altmannshofer and Straub 1411.3161, Descotes-Genon et al. 1510.04239
see also Hurth et al. 1603.00865
Update 2016

- including 3 fb$^{-1}$ LHCb measurements of $\text{BR}(B^0 \rightarrow K^* \mu^+ \mu^-)$ (2016) and $B_s \rightarrow \varphi \mu^+ \mu^-$ (2015)
- Updated $B \rightarrow V$ FFs from v2 of Bharucha et al. 1503.05534
- Best fit point: **4.5σ pull** from SM

What does it mean?
Update 2016

Reproduce this plot with flavio

- including 3 fb$^{-1}$ LHCb measurements of $\text{BR}(B^0 \rightarrow K^* \mu^+ \mu^-)$ (2016) and $B_s \rightarrow \phi \mu^+ \mu^-$ (2015)
- Updated $B \rightarrow V$ FFs from v2 of Bharucha et al. 1503.05534
- Best fit point: 4.5σ pull from SM

What does it mean?
A closer look

Pulls for individual modes:

- $B \to K^* \mu^+ \mu^- : 2.7\sigma$
 - famous P'_5 anomaly
- $B_s \to \phi \mu^+ \mu^- : 3.4\sigma$
 - BR @ low & high q^2
 - cf. Bharucha et al. 1503.05534,
 - Ronald R. Horgan et al. 1310.3887
- $B \to K \mu^+ \mu^- : 2.6\sigma$
 - BR @ low $q^2 \to R_K$
 - First pointed out in:
 - Khodjamirian et al. 1211.0234
Facts

1. Clearly, a significant tension between measurements and (these) predictions
2. All tensions solved simultaneously by a minimal new physics (EFT) assumption
$B \rightarrow K^*$: form factors?

- Complementary LCSR & LQCD results show good agreement
 Bharucha et al. 1503.05534, R. R. Horgan et al. 1501.00367

- Agreement of full FFs vs. heavy quark limit “soft” FFs using “optimised” observables Descotes-Genon et al. 1510.04239
 - Eventually, some arbitrariness in how to quantify power corrections without using info from LCSR or LQCD
 cf. Sebastian Jäger and Jorge Martin Camalich 1412.3183
 vs. Descotes-Genon et al. 1407.8526
B → K*: form factors?

- Complementary LCSR & LQCD results show good agreement
 Bharucha et al. 1503.05534, R. R. Horgan et al. 1501.00367

- Agreement of full FFs vs. heavy quark limit “soft” FFs using “optimised” observables Descotes-Genon et al. 1510.04239

 - Eventually, some arbitrariness in how to quantify power corrections without using info from LCSR or LQCD
 cf. Sebastian Jäger and Jorge Martin Camalich 1412.3183
 vs. Descotes-Genon et al. 1407.8526

 - Comment 1: when contemplating large corrections to low-q^2 form factors use high q^2 info (data, LQCD) to check consistency
$B \rightarrow K^*$: form factors?

- Complementary LCSR & LQCD results show good agreement
 Bharucha et al. 1503.05534, R. R. Horgan et al. 1501.00367

- Agreement of full FFs vs. heavy quark limit “soft” FFs using “optimised” observables Descotes-Genon et al. 1510.04239
 - Eventually, some arbitrariness in how to quantify power corrections without using info from LCSR or LQCD
 cf. Sebastian Jäger and Jorge Martin Camalich 1412.3183
 vs. Descotes-Genon et al. 1407.8526

- Comment 1: when contemplating large corrections to low-q^2 form factors use high q^2 info (data, LQCD) to check consistency
- Comment 2: several open source codes now at disposal to compare different approaches on a common basis
But,

- Branching ratios more problematic than angular observables
- Significance in angular observables does depend on form factors
- $B \to K^*$ and $B_s \to \phi$ more difficult than $B \to K$

Future:

- LCSR systematically limited
- Crucial to treat the unstable K^* on the lattice

 Agadjanov et al. 1605.03386,

 Talk by M. Hansen
Charm loops in $B \rightarrow K^* \mu^+ \mu^-$

- Culprit: matrix element of $O_{1,2}$

$$\langle \bar{K}^* | T\{i^{\mu}_{\text{em}}(x)C_{1,2}O_{1,2}(0)\} | \bar{B} \rangle$$

- Since $O_9 \propto \bar{\ell} \gamma^\mu \ell$, h_λ could mimic a new physics effect in C_9

- can be parametrised as complex-valued (CP-even) functions of q^2: $h_{+, -, 0}(q^2)$ for the 3 helicity amplitudes

How can we disentangle h_λ from C_9?

$$O_2 = (\bar{s}_L \gamma_{\mu} c_L)(\bar{c}_L \gamma^\mu b_L)$$
Anatomy of h_λ

- Without loss of generality, absorb h_λ in a q^2 and helicity dependent shift of C_9:
 \[C_9^{\text{SM}} + \Delta C_9^{+,,-,0}(q^2) \]

- h_- is expected to be helicity-suppressed

 S. Jäger and J. Martin Camalich 1212.2263

 - This can be tested by looking at S_3, P_2 → ignore for now

- Imaginary parts hardly relevent → ignore for now

What is the q^2 and helicity dependence of the apparent shift in C_9?
q^2 dependence of ΔC^λ_9

DS @ Moriond EW 2015; Altmannshofer and Straub 1503.06199
(1σ boxes)
q^2 dependence of ΔC^9_{λ}

Descotes-Genon et al. 1510.04239
q^2 dependence of ΔC_9^λ

Ciuchini et al. 1512.07157

- Bayesian fit assuming a polynomial form for h_λ
- roughly: $\tilde{g}_1 \propto \Delta C_9^-$, $\tilde{g}_3 \propto \Delta C_9^0$
q^2 dependence of ΔC_9^λ

Bayesian fit assuming a polynomial form for h_λ
- roughly: $\tilde{g}_1 \propto \Delta C_9^-, \tilde{g}_3 \propto \Delta C_9^0$
- assuming small ΔC_9^λ for small q^2 (expected for SM, but not NP!)
q^2 dependence of ΔC^λ_9

- Bin-by-bin fit of ΔC^0_9 vs. ΔC^-_9
- New physics: expect $\Delta C^0_9 = \Delta C^-_9$ equal for all bins

Current data **not precise enough** to exclude new physics hypothesis!

Plot based on discussion with C. Bobeth.
Current situation

1. Data shows significant preference for sizable effect around 4–6 GeV2
2. q^2 dependence is compatible both with new physics and with charm hypothesis

Talk by N. Mahmoudi
We can do better!

- Charm contribution obeys a dispersion relation
 Khodjamirian et al. 1006.4945 Talk by T. Mannel

Schematically:

\[h_-(q^2) = h_-(0) + q^2 h'_-(0) + q^4 \left[BW_{J/\psi} + BW_{\psi(2S)} + h^{\text{higher}}_-(q^2) \right] \]

- Measured from $B \rightarrow \psi K^*$ up to overall phase
- Small impact below $m_{J/\psi}^2$ (?)

- Need to fulfill this constraint in fits to data!
Charmonium interference

The q^2 dependence of the differential rate between the J/ψ and $\psi(2S)$ resonances can be used to infer the sign of the interference

Khodjamirian et al. 1006.4945

* this is only a cartoon – not actual numerics

Would be extremely helpful if LHCb could measure this Talk by K. Petridis
Homework: $b \rightarrow s\mu^+\mu^-$ anomalies

THEORY

- Improved lattice form factors
 - $B \rightarrow K, B \rightarrow K^*$ (finite lifetime!), $B_s \rightarrow \phi, \Lambda_b \rightarrow \Lambda$
- Exploit dispersion relation to get better handle on charm
- Non-factorisable corrections to baryon decays

EXPERIMENT

- Measure charm resonances, including relative phases between short-distance and charmonium
- finer q^2 binning
- More precise measurements of related modes: $\Lambda_b \rightarrow \Lambda\mu^+\mu^-$, ...
A comment on fits & codes

Open source codes allow to make flavour pheno results accessible to experimentalists & model builders
A comment on fits & codes

Open source codes allow to make flavour pheno results accessible to experimentalists & model builders

BUT please keep in mind that theories (both new physics and hadronic uncertainties) can change. Make sure data is published as independently of that as possible.
A comment on fits & codes

Open source codes allow to make flavour pheno results accessible to experimentalists & model builders

BUT please keep in mind that theories (both new physics and hadronic uncertainties) can change. Make sure data is published as independently of that as possible.

(i.e., Wilson coefficient fits fine “in addition”, but not “instead”.)
Violation of LFU: status of new physics explanations
Violation of lepton flavour universality?

\[B^+ \rightarrow K^+ ee \text{ vs. } B^+ \rightarrow K^+ \mu\mu \]

- 2.6\(\sigma\)
- seen in single experiment
- theoretically very clean \textit{Talk by M. Bordone}

\[B \rightarrow D^{(*)}\tau\nu \text{ vs. } B \rightarrow D^{(*)}(e, \mu)\nu \]

- 4.0\(\sigma\) combined
- 3 experiments
- dependent on form factors (\(D: \text{LQCD}, D^*: \text{HQET}\)
Unified new physics explanations

Models with a single (heavy*) new particle/multiplet:

<table>
<thead>
<tr>
<th>Spin</th>
<th>$SU(3)_C$</th>
<th>$SU(2)_L$</th>
<th>Name</th>
<th>Suggested</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>W', Z'</td>
<td>Greljo et al. 1506.01705</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
<td>S_1</td>
<td>Bauer and Neubert 1511.01900</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>S_3</td>
<td>Medeiros Varzielas and Hiller 1503.01084</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>U_1</td>
<td>Barbieri et al. 1512.01560</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>U_3</td>
<td>Fajfer and Košnik 1511.06024</td>
</tr>
</tbody>
</table>

... and many more studies in the last 2 years [Talk by A. Crivellin](#)

* See [Bečirević et al. 1608.08501](#) for a LQ model with RH neutrinos
Indirect constraints

- U_3, S_3: strong constraint from $B \rightarrow K\tau\bar{\nu}_\mu$ cf. Buras et al. 1409.4557
- S_1:
 - $b \rightarrow s\mu^+\mu^-$ generated at 1-loop level Bauer and Neubert 1511.01900
 - Once all constraints (including K and D decays) taken into account, no simultaneous solution of anomalies Bečirević et al. 1608.07583

- All models generate $B \rightarrow K\tau\mu$ and $B_s \rightarrow \tau\mu$, but too small to be observed at Belle-II or LHCb Bhattacharya et al. 1609.09078
- RG effects lead to purely leptonic LFV Feruglio et al. 1606.00524
Direct constraints

- Strong constraints from $b\bar{b} \rightarrow \tau^+\tau^-$ searches at ATLAS/CMS
 Greljo et al. 1506.01705, Faroughy et al. 1609.07138
 - both Z' (s-channel) and LQ (t-channel)

- U_1 LQ on the verge of being excluded
- W'/Z' only allowed if light ($M < 500$ GeV) or broad ($\Gamma/M > 30\%$)
Summary of new physics explanations

Single-particle explanations of all B decay anomalies are increasingly challenged by a fruitful interplay between

- model building
- B factory constraints ($B \rightarrow K\nu\bar{\nu}$)
- LHCb constraints
- Charged lepton flavour violation
- Direct constraints from ATLAS/CMS

... of course, more elaborate constructions possible!
The crucial role of $B_s \rightarrow \mu^+ \mu^-$

- All single-particle explanations of all anomalies predict $C_9^{\text{NP}} = -C_{10}^{\text{NP}}$

- C_{10} affects $B_s \rightarrow \mu^+ \mu^-$ – free from photon-mediated effects!
Future constraints on C_{10} from $B_s \rightarrow \mu^+\mu^-$

David Straub (Universe Cluster)
Homework: violation of LFU

EXPERIMENT

- R_{K^*}, R_φ, and all that
 Talk by B. Capdevila

- $\Lambda_b \to \Lambda_c \tau \nu$ etc.
 Talk by G. Ciezarek
Homework: violation of LFU

EXPERIMENT

- R_{K^*}, R_{ϕ}, and all that Talk by B. Capdevila
- $\Lambda_b \rightarrow \Lambda_c \tau \nu$ etc. Talk by G. Ciezarek

THEORY

- be patient
Looking ahead
(a few examples)
Status: new physics in B^0 mixing

- Using CKM from tree and matrix element from FNAL/MILC
- best fit 1.5σ from SM
- Currently probing SM at 10% level in CP conserving, few-% level in CP violating observable
Status: new physics in B_s mixing

- Using CKM from tree and matrix element from FNAL/MILC
- best fit again 1.5σ from SM
\(\Delta M_s \) error budget

\[
\Delta M_s \propto f_{B_s}^2 \hat{B}_{B_s} | V_{tb} V_{ts}^* |^2 = f_{B_s}^2 \hat{B}_{B_s} \left[V_{cb}^2 (1 + O(\lambda^2)) \right]
\]

Relative uncertainty:

- Theory: 9%
- Experiment: 0.1%

Clearly, need lattice & CKM from tree to make progress!

(Using FNAL/MILC bag parameters and neglecting the correlation between \(f_{B_s} \) and \(B_1^{(s)} \))
$$\Delta M_d \text{ error budget}$$

$$\Delta M_s \propto f_{B_d}^2 \hat{B}_{B_d} |V_{tb} V_{td}^\ast|^2 \approx f_{B_d}^2 \hat{B}_{B_d} \left(V_{ub}^2 + V_{cb}^2 V_{us}^2 - 2 V_{ub} V_{cb} V_{us} \cos \gamma \right)$$

Relative uncertainty:

- **Theory:** 15%
- **Experiment:** 0.4%

(Using FNAL/MILC bag parameters and neglecting the correlation between f_{B^0} and $B_1^{(d)}$)
Tree vs. loop

Crucial to test UT from tree vs. loop processes: importance of γ

Talk by D. Johnson
Future constraints from B^0 mixing

Dream scenario:

- current central values
- f_{B^0} to 0.5%
- \hat{B}_{B^0} to 0.5%
- V_{ub} and V_{cb} to 1%
- γ to 0.5°
Future constraints from B_s mixing

Dream scenario:

- current central values
- f_{B_s} to 0.5%
- \hat{B}_{B_s} to 0.5%
- V_{ub} and V_{cb} to 1%
- γ to 0.5°
Determining the chirality of $b \rightarrow s\gamma$

- Wilson coefficient C'_7 strongly suppressed in the SM
- Need exclusive decays to determine chirality
- recent LHCb measurements of $B \rightarrow K^* e^+ e^-$ angular observables and $B_s \rightarrow \phi\gamma$ time-dependent decay rate

Paul and Straub 1608.02556
Future exclusive constraints on $b \rightarrow s\gamma$

Even more info on chirality and CP phases from

- Amplitude analysis of $B \rightarrow K\pi\pi\gamma$
- $\Lambda_b \rightarrow \Lambda\gamma$
New FCNC frontiers

- $b \to s$ transitions
 - $\Lambda_b \to \Lambda$ decays
 - $b \to s\tau^+\tau^-$ transitions

- $b \to d$ transitions
 - LCHb: 1st measurements of $B \to \pi\mu^+\mu^-$, $B \to \rho(\to \pi\pi)\mu^+\mu^-$, slight excess in $B_d \to \mu^+\mu^-$. Only the beginning!
 - Theory: better understanding of $O(V_{ub}V_{ud}^*)$ effects in semi-leptonic decays? see e.g. Hambrock et al. 1506.07760

- $c \to u$ transitions
 - Rare charm decays Talk by S. de Boer & V. Chobanova
 - Charm mixing Talk by A. Davis & A. Petrov
Conclusion

- Indirect searches crucial to find new physics → 300 fb^{-1}
 extremely well motivated

- Significant tensions in $b \rightarrow s\mu^+\mu^-$ transitions could be new physics, but SM explanations possible with current data

- Simultaneous new physics explanations of all $b \rightarrow s\mu^+\mu^-$ and $b \rightarrow c\tau\nu$ anomalies increasingly challenged by interplay of direct & indirect constraints

- Many exciting physics opportunities at LHCb run 2-3-4-5 (and Belle-II) that I didn’t mention

- Time for new data!