

Transportable pulsed-power generator for high-energy experimentation

B M Novac¹, I R Smith¹, P Senior¹, C Greenwood¹ and G Louverdis²

¹Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK ²Security Sciences Department, [dstl], Fort Halstead, Kent TN14 7BP, UK

Funded by [dstl] Through Contract RD026-02560

 P^3G

Content

Transportable systems

The pulsed power generator

Experimental results

Conclusions

Transportable systems

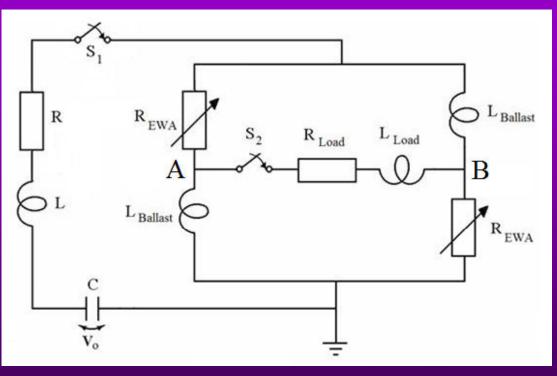
Loughborough
University

25 kJ

 P^3G

50 kJ

400 kJ



The pulsed power generator

Pulsed power generator (1)

Electrical scheme of the pulsed power generator

C is a capacitor bank of equivalent resistance *R* and self-inductance *L*. It drives a pair of EWAs and a pair of ballast inductors when switch *S1* is closed. The load is attached between the nodes A and B when *S2* closes, near the moment of peak voltage across both EWAs.

Pulsed power generator (2)

Capacitor bank: C = 106.26 μ F charged to an initial voltage V₀ = 23.86 kV (stored energy 30 kJ); R = 10 m Ω ; L = 40 nH

- The two EWAs are identical. Each is made from 4 parallel-connected high-purity copper wires 465 mm long and 250 µm in diameter
- The two identical ballast inductors each have an inductance L_{Ballast} = 8.3 μH
- The total load inductance, including the HV connections, is about $L_{load} = 10 \ \mu H$

LoughboroughUniversity

Pulsed power generator in the laboratory

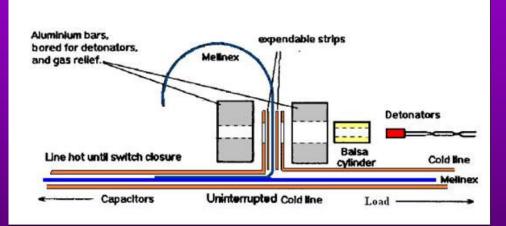
 P^3G

Loughborough University

BICC T Capacit Inducta Resistan Energy

Capacitors

			OIL FILLER PLUG	
		LIFTING HOLES		
		ES 189 CAPACITOR	POLYTHENE SHEET	
		HT CONNECTION	EDGE CONTROL	
Туре	ES 189	EARTH CONNECTION C	MELINEX INSULATION	
tance	51 μF		EARTH CONNECTION	
ince	7 nH	STEEL CLAMP	SPONGE RUBBER	
mce	$1 \text{ m}\Omega$	PLATE	SPONGE ROBBER	
(at 25 kV)	16 kJ			
Nominal Para	neters			



Ballast inductors and EWAs

High-Coulomb detonator activated closing switch (S1)

Loughborough

University

 P^3G

Aqueous high-power resistive load

Loughborough University

Spark-gap in ambient air

SF6 pressurised spark-gap (components)

 P^3G

Electrical diagnostics

Self-integrating Rogowski coil rise-time: 1 ns

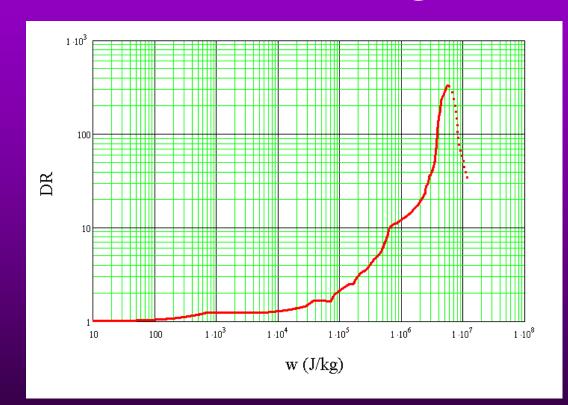
300 kV voltage probe

1 MV voltage probe

Loughborough transportable pulsed power generator inside its container

LoughboroughUniversity

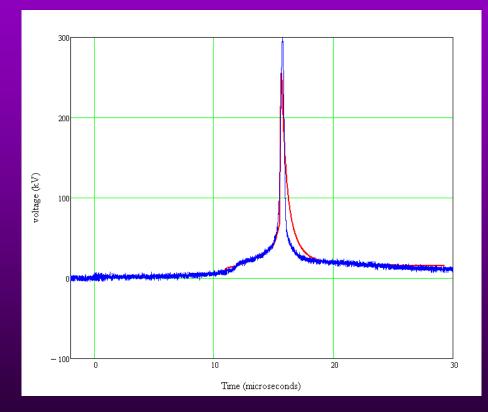
 P^3G



Experimental Results

Numerical modelling of EWA

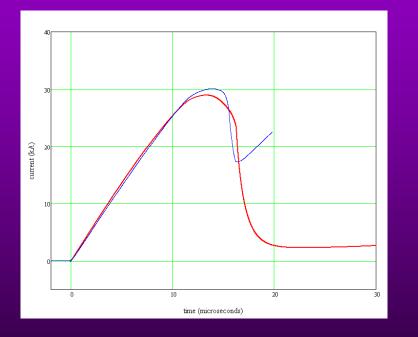
Exploding wire model (in air)

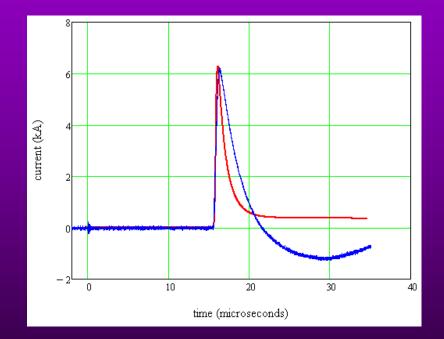

DR = R(t)/R(0) is the dynamic resistance ratio and w is the specific energy

Voltage generated by a single EWA

EWA:

copper wires diameter: 250 μm number: 4 length: 465 mm Electric field: 6.5 kV/cm Energy absorbed: 6.5 kJ Voltage multiplication: 12.6


Experimental results (blue l ines) Theoretical prediction (red line)



Currents

EWA

Experimental results (blue l ines)Experimental results (blue l ines)Theoretical prediction (red line)Theoretical prediction (red line)Load: 45 Ω; Peak power: 1.7 GW

CONCLUSIONS

Main conclusions

- A transportable pulsed power generator for high-energy experimentation has been successfully developed
- The generator has a simple and very robust design
- Tens of shots have been performed without any problem
- The generator is capable of developing voltages up to 0.5 MV on high impedance loads, corresponding to an electrical power approaching 2 GW

Thank you for your attention!

Any questions?