

ABB Switzerland Ltd, Semiconductors Fabrikstrasse 3 CH-5600 Lenzburg / Switzerland www.abb.com/semiconductors

High Power Reverse Conducting Solid State Switch for Environmental Applications

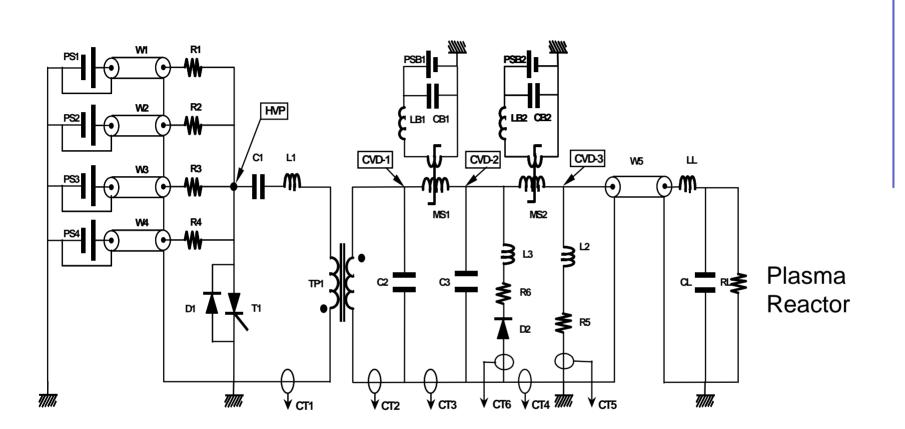
(De-NOx / De-SOx Modulator)

Adriaan Welleman

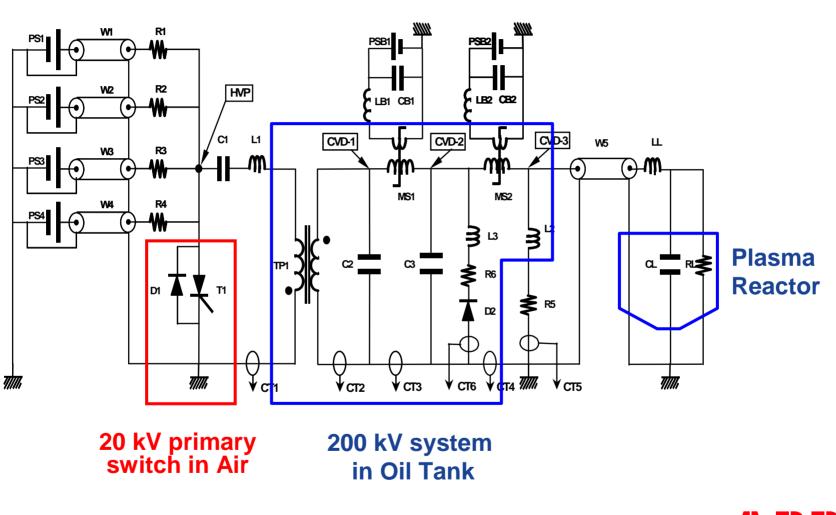
Manager Pulsed Power & Assemblies

ABB Switzerland Ltd, Semiconductors

adriaan.welleman@ch.abb.com


Introduction

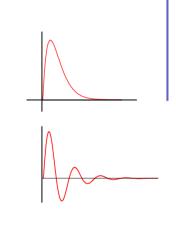
- n Application
- n Specification
- n Component Selection
- n Solid State Switch Design
- n Switch Construction and Cooling
- n Test Results
- n Reliability
- n Summary


Application

© ABB Switzerland Ltd - 4 -

ABB

Application



Specification of Discharge Switch

Charge Voltage Pulse Current Current Rise Rate Pulse Repetition Rate Pulse Form (normal) Pulse Width (normal) Pulse Form (during arcing) Pulse Width (during arcing) Cooling

20 kVdc 12.6 kA 10 kA/µs 300 Hz Exponential decay 12 µs Damped Sine 250 µs Transformer Oil

Two prototypes with the same specification, supplied by ABB in year 2002 worked well during a five years period.

ABB

One failed in 2007 because of condensation caused by water cooling issues, not by devices.

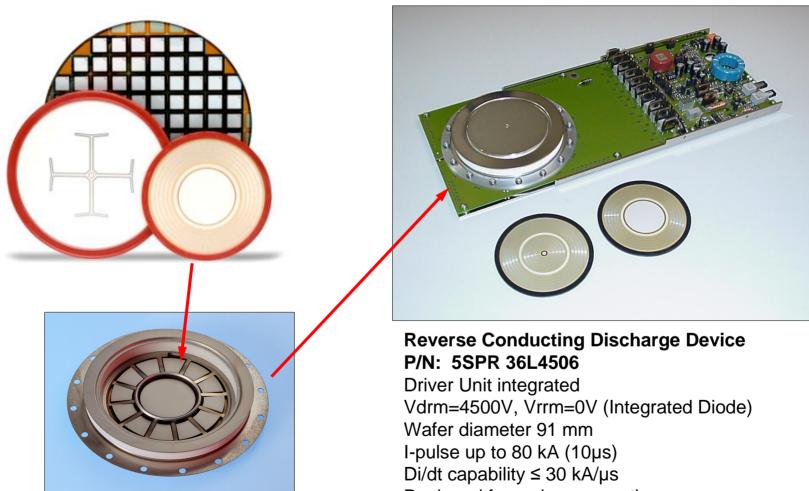
- ► High DC Voltage (20 kVDC cont.)
- ► High Peak Current (12.6 kA 12 µs nominal)
- ► High Current Rise Rate (di/dt=10 kA/µs)
- ► High Pulse Repetition Rate (300 Hz)
- Low Inductance
- ► Life-Time more than 12 years (24 h/day)

- ► High DC Voltage → Need series connection
- ► High Peak Current (12.6 kA 12 µs nominal)
- ► High Current Rise Rate (di/dt=10 kA/µs)
- ► High Pulse Repetition Rate (300 Hz)
- Low Inductance
- ► Life-Time more than 12 years (24 h/day)

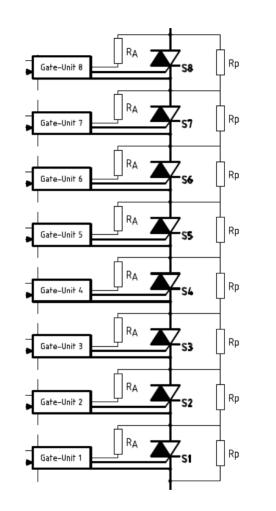
- ► High DC Voltage → Need series connection
- ► High Peak Current → Need large wafer area
- ► High Current Rise Rate (di/dt=10 kA/µs)
- ► High Pulse Repetition Rate (300 Hz)
- Low Inductance
- ► Life-Time more than 12 years (24 h/day)

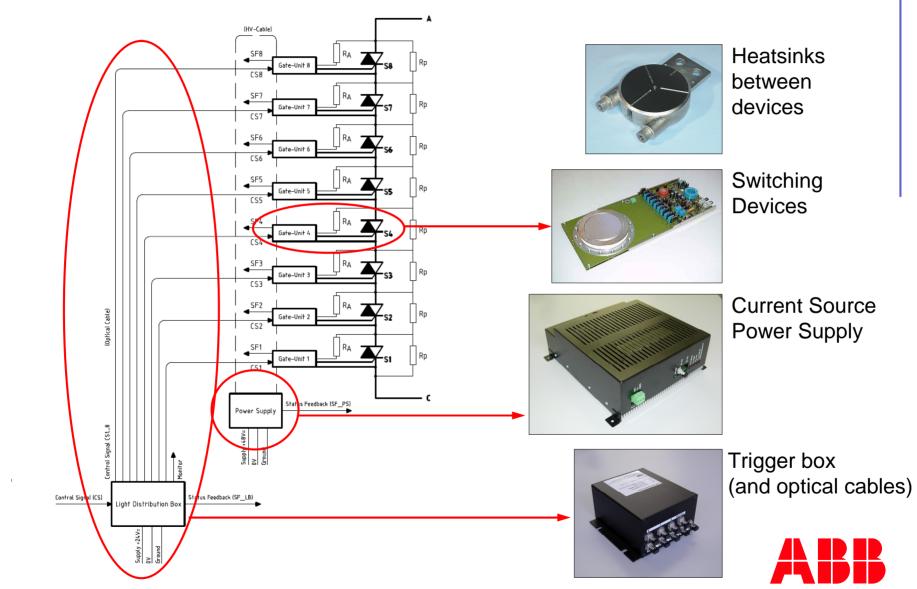
- ► High DC Voltage → Need series connection
- ► High Peak Current → Need large wafer area
- ► High Current Rise Rate → Need fine gate structure
- ► High Pulse Repetition Rate (300 Hz)
- Low Inductance
- ► Life-Time more than 12 years (24 h/day)

- ► High DC Voltage → Need series connection
- ► High Peak Current → Need large wafer area
- ► High Current Rise Rate → Need fine gate structure
- ► High Pulse Repetition Rate → Need adequate cooling
- Low Inductance
- ► Life-Time more than 12 years (24 h/day)

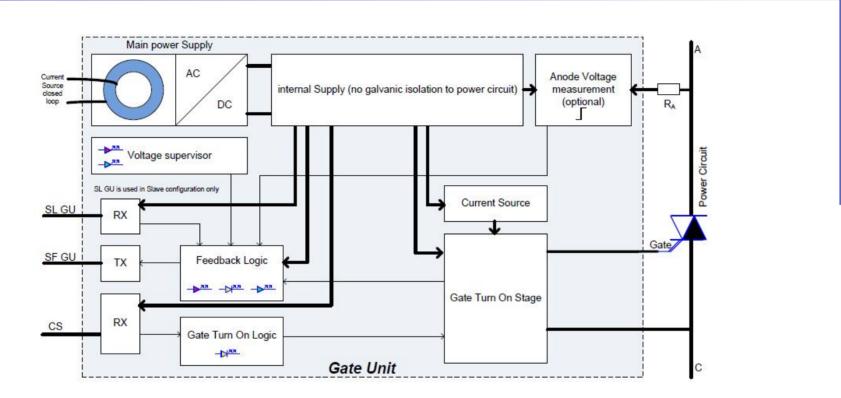

- ► High DC Voltage → Need series connection
- ► High Peak Current → Need large wafer area
- ► High Current Rise Rate → Need fine gate structure
- ► High Pulse Repetition Rate → Need adequate cooling
- ► Low Inductance → Need Gate-Unit and FW Diode near
- ► Life-Time more than 12 years (24 h/day)

- ► High DC Voltage → Need series connection
- ► High Peak Current → Need large wafer area
- ► High Current Rise Rate → Need fine gate structure
- ► High Pulse Repetition Rate → Need adequate cooling
- ► Low Inductance → Need Gate-Unit and FW Diode near
- ► Life-Time more than 12 years → Dedicated design with reliable devices from Mass production


Component selection


Solid State Switch Design

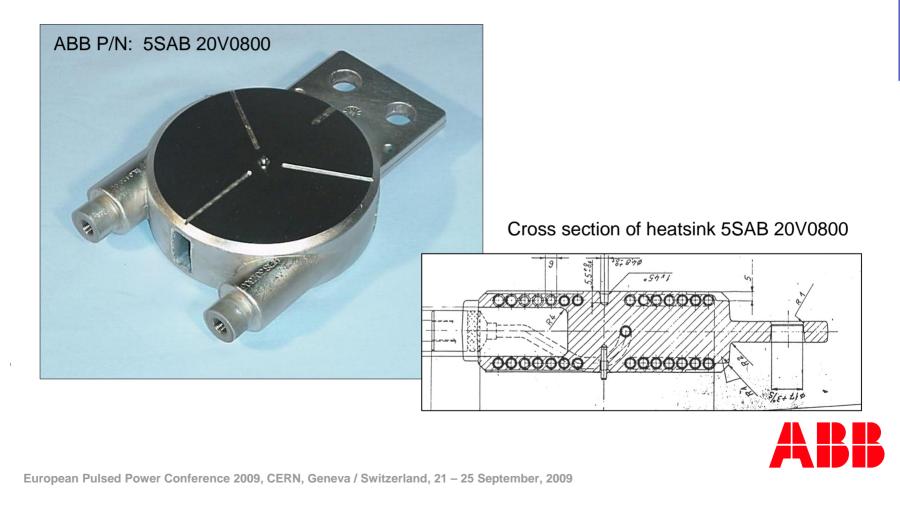
- For 20kVdc series connection of devices is needed
- Each device has 4.5kV blocking voltage capability
- Because of cosmic ray withstandability (reliability) the devices should be only charged to max. 2.8 kVdc
- This will mean 7 devices for 20 kVdc, but because of redundancy it was decided to use 8 devices in series

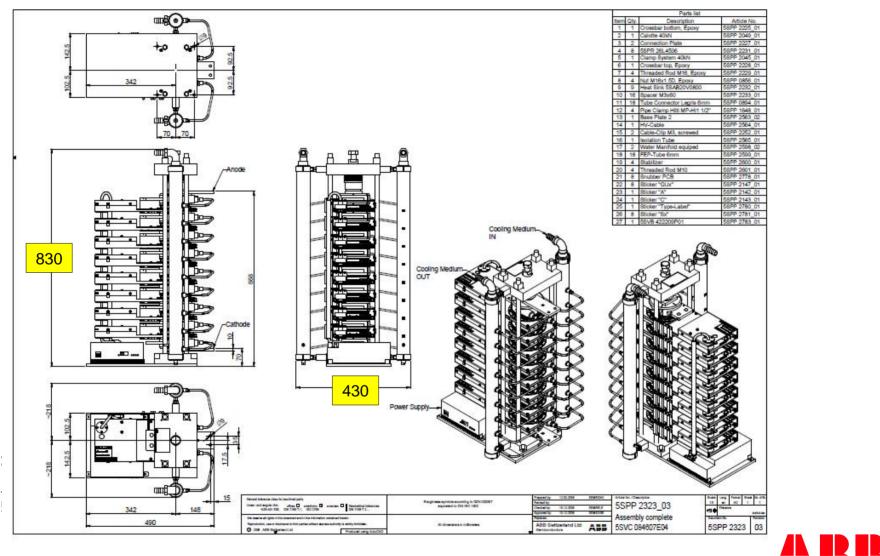

Solid State Switch Design

European Pulsed Power Conference 2009, CERN, Geneva / Switzerland, 21 – 25 September, 2009

© ABB Switzerland Ltd - 16 -

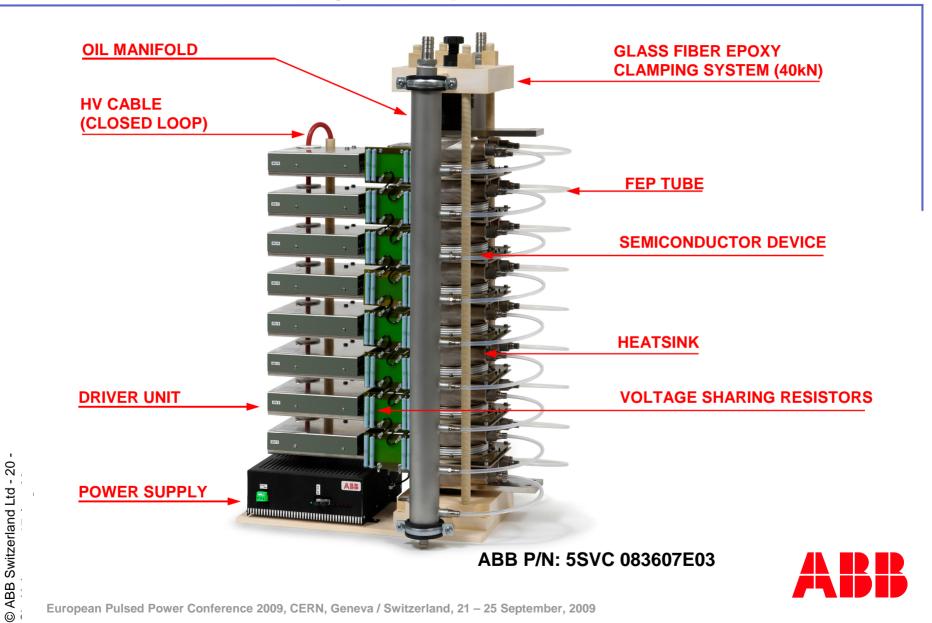
Gate Driver Unit





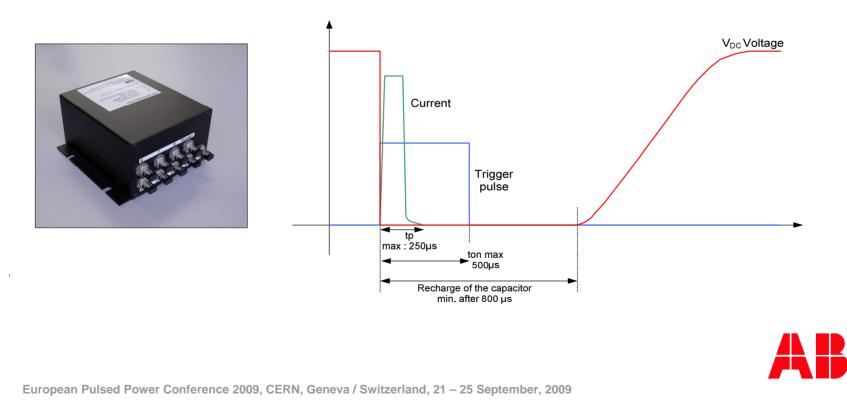
Cooling

For 300 Hz operation and compact, low induction design, the switch is equiped with heatsinks cooled with transformer oil which is available in the oil tank of the main system

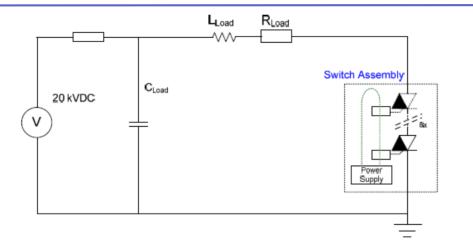


Assembly Construction

.

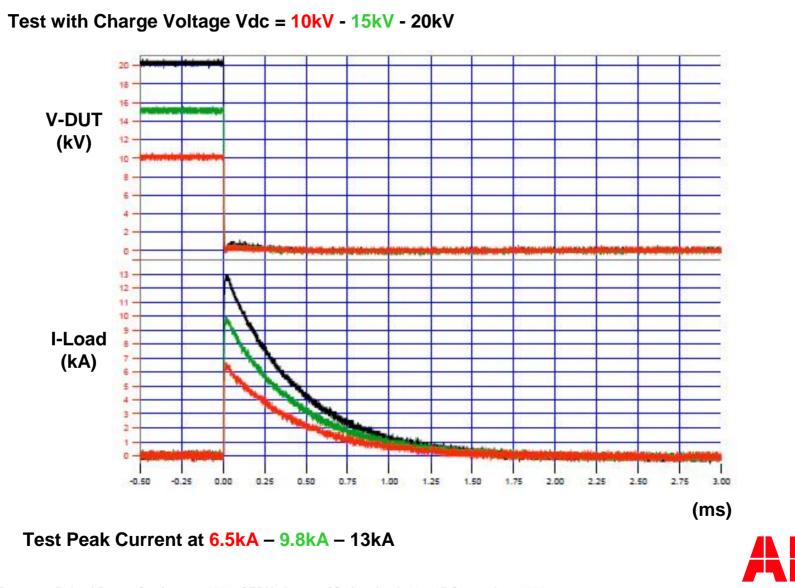

Switch Assembly Complete

Triggering


The driver units are individually triggered by an optical control signal which is given by the light distribution box.

The trigger pulse has to be longer as the pulse of the main current because discharge devices are not able to switch-off current.

.


Tests

Nr.	Test	Conditions	Limits
1)	Blocking voltage test on device level	V _{DR} = 4.0 kV, sinus halve wave, 50 Hz Without parallel resistors Tj = 25°C	I _{DR} < 10 mA
2)	Voltage sharing	V _{dc_Switch} = 20 kV DC Tj = 25°C	Maximum difference V _{AK S1} V _{AK S8} = 400V
3)	Difference of gate voltage delay of the 8 semiconductors	Turn on V _{GK} = 5 V Tj = 25°C	Maximum difference of gate voltage delay = 50 ns
4)	Functional pulse test	R-L-C circuit Single pulse $V_{Switch} = 20 \text{ kV}$ $I_{Switch} > 12.6 \text{ kA}$ $R = 1.5 \Omega$ $L = 2 \mu H$ $C = 290 \mu F$ Ta = 25°C	Go / No go
5)	Isolation test (Between Anode, Cathode and the 48 VDC input of the inductive power supply)	Viso = 40 kV DC / 1 min. Ta = 25°C	I _{iso} < 1 mA

Test (Application Oriented)

European Pulsed Power Conference 2009, CERN, Geneva / Switzerland, 21 – 25 September, 2009

© ABB Switzerland Ltd - 23 -

Test Results

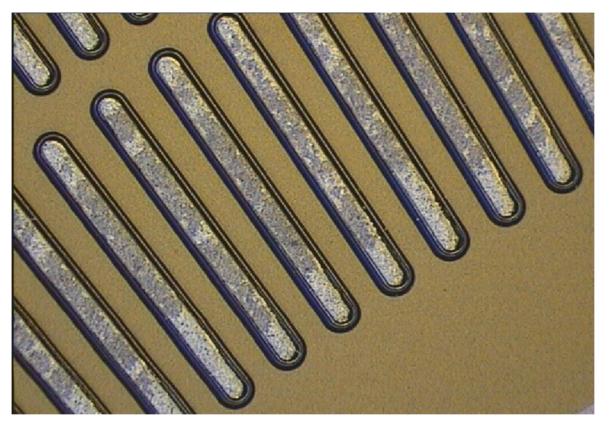
	Device number									Leakage current forward							
	Dv No SD1	10 March 10	DV No S03	Dv No S04	Dv No S05	Dv No SD6	Dv No S07	Dv No S08	IDR S01	IDR S02	IDR S03	IDR S04	IDR S05	IDR S06	IDR S07	IDR S08	
		[]	[]	[]	[]	[]	11	[]	[mA]	[mA]	[mA]	[mA]	[mA]	[mA]	[mA]	[mA]	
Lower limit	st stars i		5 1634		2	- 1888 m - 3	S. CANA	12-224-52	- 20 - CAS	- 2000 - 3	200 - COF	State - 1983	- Section (Sec	1	S. S. Ang	- 224 1	
Upper limit									10	10	10	10	10	10	10	10	
SNo:	-																
392-061-08_017	PP24.08	PP24.30	PP24.25	PP24.27	PP24.42	PP24.49	PP24.01	PP24.04	0.3	0.1	0.2	0.1	5.9	5.1	5.0	0.1	
392-061-08_018	PP24.07	PP24.09	PP24.14	PP24.15	PP24.17	PP24.24	PP24.26	PP24.43	0.1	1.1	0.2	0.1	1.6	0.2	0.1	0.1	
92-061-08_019	PP24.46	PP24.47	PP24.50	PP23.38	PP23.42	PP23.46	PP24.11	PP24.36	0.5	2.0	3.8	0.1	1.2	2.0	0.4	1.4	
392-061-08_020	PP24.37	PP24.39	PP24.41	PP24.32	PP23.23	PP24.35	PP23.17	PP23.37	0.1	1.8	1.8	6.4	0.1	5.4	1.1	2.9	
92-061-08_021	PP23.43	PP23.45	PP24.10	PP24.23	PP23.22	PP23.41	PP24.18	PP24.38	5.3	0.1	0.1	0.1	6.8	0.5	0.4	0.1	
392-061-08 022	PP23.08	PP24.34	PP23.16	PP23.20	PP23.31	PP23.30	PP24.19	PP24.20	0.1	0.2	1.2	0.1	3.0	0.4	0.2	0.1	

	2										3								
	Voltage sharing forward (DC voltage) @ VDC - 20 kV									Gate delay with the light distribution Box and the Assembly Monitor to VGK of Sox @VGK = 5V									
	SD1 S02 S03 S04 S05 S06 S07 S08 Vak s0						Max. diff. VAK 801	tdelay SD1	tdelay S02	tdelay S03	tdelay S04	tdelay S05	tdelay S06	tdelay S07	tdelay SD8	tdelay S01S08			
20	M	M	M	M	M	M	M	[1]	VAK S08	[ns]	[ns]	[ns]	[ns]	[ns]	[ns]	[ns]	[ns]	[ns]	
Lower limit	5 mm 3		d 11 12		1 (i)			10 I I I I I I I I I I I I I I I I I I I		8	1			1		1	19		
Upper limit	2		9	-	8	-		\$	400	+/-25	+/-25	+/-25	+/-25	+/-25	+/-25	+/-25	Ref.	50.0	
SN0:	i i																		
392-061-08_017	2510	2500	2550	2540	2510	2540	2500	2530	50	3.0	-8.0	-2.0	-4.0	2.0	4.0	-2.0	0.0	12.0	
392-061-08_018	2530	2540	2560	2510	2530	2500	2510	2510	60	-3.0	-1.0	-4.0	3.0	-6.0	-2.0	6.0	0.0	12.0	
392-061-08_019	2490	2510	2540	2510	2530	2530	2510	2500	50	-5.0	-6.0	-10.0	-15.0	-4.0	-9.0	-8.0	0.0	15.0	
392-061-08_020	2530	2540	2550	2480	2510	2470	2530	2520	80	1.0	8.0	10.0	1.0	6.0	4.0	3.0	0.0	10.0	
392-061-08_021	2540	2510	2490	2520	2510	2540	2510	2520	50	3.0	-4.0	1.0	-5.0	-5.0	-6.0	-7.0	0.0	10.0	
392-061-08_022	2510	2520	2520	2490	2470	2500	2550	2550	80	-4.0	-6.0	-2.0	3.0	-6.0	-5.0	-4.0	0.0	9.0	

	4	5	6										
	Pulse Test	lso. Test	Water leakage test no leakage	GU Protocol OK									
	20kV / 12.6kA	l Iso 40 kVDC / t=1min.		S01	S02	S03	S04	S05	S06	S07	S08		
	[go / no go] (Mno)	[mA]	[go/nogo]	[go /	[go /	[go/	[go /	[go /	[go /	[go /	[go /		
Lower limit				no go]	no go]	no go]	no go]	no go]	no go]	no go]	no go		
Upper limit		1											
SNo:	·	3											
392-061-08_017	OK (62)	< 0.1 mA	OK	OK	OK	OK	OK	OK	OK	OK	OK		
392-061-08_018	OK (060)	< 0.1 mA	OK	OK	OK	OK	OK	OK	OK	OK	OK		
392-061-08_018 392-061-08_019	OK (060) OK (099)	< 0.1 mA < 0.1 mA	OK OK	OK OK	OK OK	OK OK	OK OK	OK OK	OK OK	OK OK	OK OK		
			CENT				1.1.1.2	1 - E. A. M. T.	2023	12 102			
392-061-08_019	OK (099)	< 0.1 mA	OK	OK	OK	OK	OK	OK	OK	ОК	OK		

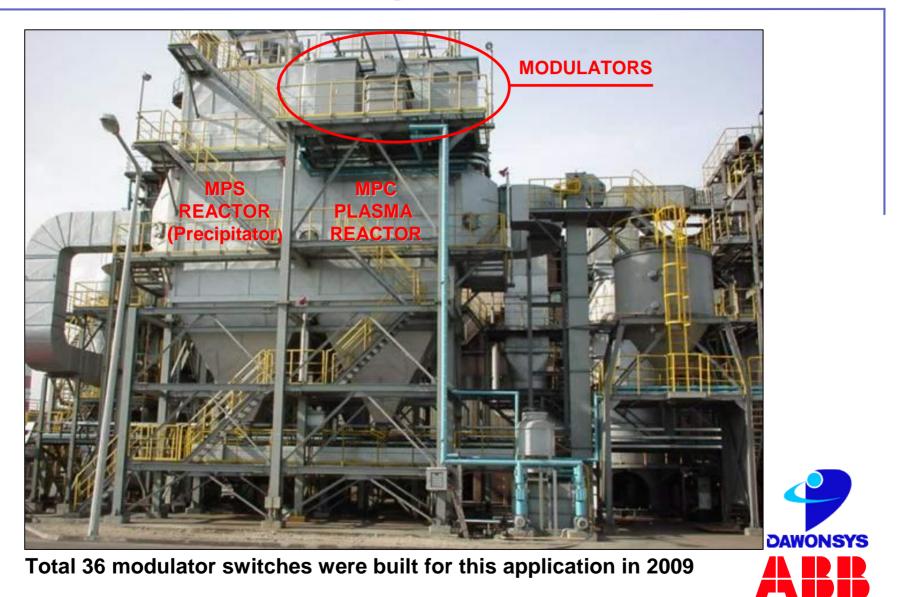
Reliability

The used devices are based on one wafer technology instead of smaller chips in parallel connection.


In case of device failure the switch will continue to operate as the device has a short circuit failure mode and remaining series devices are still functioning. (Redundancy) Failures are monitored by the driver unit.

Device tests were performed with 31 kA @ 100 µs for 1 Mio pulses and no real degradation of the wafer was detected. The devices in the switch have 400x lower stress.

By analysing the devices which were used in the prototype from 2002 till 2007 it was confirmed that the wafers had not reached half of the expected lifetime.


Reliability

Contact Fingers on wafer from prototype switch after 4 years operation

Korean Steel Sintering Plant

European Pulsed Power Conference 2009, CERN, Geneva / Switzerland, 21 – 25 September, 2009

.

Summary

It has been shown that proper designed high power solid state switches are now becoming also succesfull in Industrial and Environmental applications.

Experience with field applications and several tests have proven that reliability is at a very high level.

System cost is almost comparable to tube driven designs, but operation cost for the solid state version is clearly less.

ABB has successfully supplied more than 400 switch assemblies for high power pulse modulators during the last 4 years and gained very large experience in Military as well as Industrial applications.

Thank you

for your attention

www.abb.com/semiconductors

