Generation of high pulsed magnetic field using a low inductance surface switch

Philippe Auvray, Jean Larour, Stavros D. Moustaizis
P. Auvray and J. Larour are with the Laboratoire de Physique des Plasmas (LPP), Ecole Polytechnique, route de Saclay, F-91128 Palaiseau, France
S. D. Moustaizis is with Physics Laboratory, Technical University of Crete (TUC), Greece

UNIVERSITE

Context

Laser - matter and laser plasma interaction in presence of a high magnetic field is a hot topic.

- laser- plasma Pollock et al, Rev. Sci. Instrum 77 (114703 (2006), Froula et al. PRL 98, 135001 (2007)
- neutron production Keskelidou, Moustaizis et al., Applied Radiation and isotopes, 63 (2005) 671-680

B field can ensure the condition of an extended confinement time for charged particles
Larmor radius $\rho_{\mathrm{L}}=\mathrm{mv} / \mathrm{qB}=\left(2 \mathrm{E}_{\text {kin }} \mathrm{m}\right)^{1 / 2} / \mathrm{qB}$
Electrons

$$
\begin{array}{ll}
\omega_{\mathrm{ce}} / 2 \pi[\mathrm{GHz}]=28 \mathrm{~B}[\mathrm{~T}] & \omega_{\mathrm{pe}} / 2 \pi[\mathrm{MHz}]=15 \mathrm{~B}[\mathrm{~T}] \\
\rho_{\mathrm{Le}}=2.8\left(\mathrm{E}_{\mathrm{kin}}[\mathrm{eV}]\right)^{1 / 2} / \mathrm{B}[\mathrm{G}] & \rho_{\mathrm{Le}}=1.4\left(\mathrm{E}_{\mathrm{kin}}[\mathrm{eV}]\right)^{1 / 2} / \mathrm{B}[\mathrm{G}]
\end{array}
$$

B-field is generated by Helmholtz coils (Pollock et al. 2006, Froula et al. 2007, Courtois et al.
Rutherford Lab Annual report 2002-3 P. 91) or driven by a large HPP generator (Presura et al., IEEE TPS 36 (2008) p. 17-21)

Experiments should be conducted in semi- or non-destructive conditions

Main objective

Fig. 2. Proposed experimental setup for the study of both the neutron pump laser scheme and the appropriate gas mixture of the excimer cavity. The block of the three layers (6,7 and 8) has a cylindrical form, surrounding the pulsed magnetic field and the pulsed gas nozzle. Both the nozzle and the magnetic field can operate at 10 Hz and are synchronized with the 10 Hz highintensity laser beam. Two mirrors (not visible in the figure), a plane and a spherical one (3 m focal distance), and a monochromator allow one to study the fluorescence from the laser cavity.

From theory and numerical simulation, the objective is to create a cm-size interaction zone with a magnetic mirror geometry in the 50 Teslas range

Keskelidou, Moustaizis et al., Applied Radiation and isotopes, 63 (2005) 671-

Objectives

- A compact generator
-A high pulsed current
~1 MA
in a $\mu \mathrm{s}$ regime
into a cm-bore single turn coil
- Calibration of the B-field
- Compatibility with a laser created plasma experiment

Typ. a few sq.meter

Capacitive storage
Very low inductance switch

Alternative operation $<\mathrm{kHz}$
Non destructive experiment

Content

1. Surface switches in Polytechnique Plasma Lab
2. Preliminary setup
3. Calibration
4. High current tests
4.A Two caps bank
4.B Four caps bank
5. Conclusion

1. Surface switches

Originating from the work by Sarjeant et al. (IEEE Tr. Elec. Devices ED-26 (1979) p1414), the Polytechnique Plasma lab has developed different surface switches (Buzzi et al., RSI 61 (1990) p. 852, Etlicher et al. IEEE PPC 1995 digest p 243-8).

Surface switch design and operation

1 mm thick glass reinforced melamina sheet is a convenient substrate for heavy duty surface discharge switching in air

2. Preliminary setup

LC circuit :
flat line PE insulated
$2 \times 4.24 \mu \mathrm{~F}$ bank
Caps rather old
Operation in atmospheric air

Operating voltage 20-30 kV
May create difficulties to trigger the surface switch

Setup with a $2 \times 4.24 \mu \mathrm{~F}$ bank

Current monitoring

B θ probe 4-turns 1-mm wire coil

CT on the return current wire
for low currents (kA) only

Bottom view

In order to get L , the current intensity is crossed checked with a model of LC oscillating discharge
measurement may be influenced by current distribution in the flat line

B-field monitoring

STATIC
GN206 gaussmeter

Hall effect probe Siemens KSY14 Typ. <1 kHz
\square

B-dot | Comparison at |
| :--- |
| low frequency |

One-turn coil $\varnothing 2.5 \mathrm{~mm}$

Comparison using magnets $125 \mu \mathrm{~V} / \mathrm{G}$

3. Calibration

At very low current
In quasi static conditions (<kHz)
$>$ A $1000 \mu \mathrm{~F}$ cap is inserted in the circuit, charged up to 300 V
$>$ The switch is a pneumatically driven one
> The coil bore is compatible with Hall probe (i.d. $10-16 \mathrm{~mm}$)

Three coils are tested to increase B value and axial uniformity :
1.
2. Side-on hole and long coil
3. Side-on hole and short coil

Calibration setup

Calibration result - coil \#1

Calibration results - coils \#2-3

Bz (G) coil $2 \quad$ B peak 311 G

$\mathrm{Bz}(\mathrm{G})$ coil 3
B peak 410 G

4.A. High current tests $-2 \times 4.24 \mu \mathrm{~F}$ bank

The setup is as described before.

The tests are conducted:

- at growing charging voltage $20 \mathrm{kV}-30 \mathrm{kV}$
- for various HV pulser to trigger the surface switch
- for decreasing flat line spacing
- for the three coils

Two-caps tests influence of total inductance

4.B. High current tests $-4 \times 4.24 \mu \mathrm{~F}$ bank

Parallel mounting:
C is increased
L is expected to decrease
Wider line
I and B are expected to be $\times 2$ or less

The tests are conducted :

- at growing charging voltage $25 \mathrm{kV}-30 \mathrm{kV}$
- for various HV pulser to trigger the surface switch
- for coils 2 and 3

Setup with a $4 \times 4.24 \mu$ F bank

Four-caps tests

influence of total inductance

insulation	coil	channel number	V charge kV	T/4 ns	$\begin{gathered} \text { I } \\ \text { max } \\ \text { kA } \end{gathered}$	B T	L nH
1 mm PE	2	2	25	1220	390	13,4	20,5
1 mm PE	2	2	25	1257	413	11,2	17,7
1 mm PE	2	1	25	1284	403	11,1	21,1
1 mm PE	2	3	25	1283	399	13,9	19
1 mm PE	2	7	26	1135	429	18,4	14,7
1 mm PE	2	5	26,5	1071	342	18,5	16,7
higher energy triggering Marx							
1 mm PE	2	14	30	908	856	21	13,6
1 mm PE	2	7	30	906	857	21,5	13,7
1 mm PE	2	7	30	918	849	22	13,9
1mm PE	3		30	990	838	26,3	15,4

Four-caps tests

 influence of channel number| insulation | coil | channel
 number | V charge kV | T/4
 ns | $\begin{gathered} \text { I } \\ \text { max } \\ \text { kA } \end{gathered}$ | B
 T | L
 nH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| 1 mm PE | 2 | 2 | 25 | 1220 | 390 | 13,4 | 20,5 |
| 1 mm PE | 2 | 2 | 25 | 1257 | 413 | 11,2 | 17,7 |
| 1 mm PE | 2 | 1 | 25 | 1284 | 403 | 11,1 | 21,1 |
| 1 mm PE | 2 | 3 | 25 | 1283 | 399 | 13,9 | 19 |
| 1 mm PE | 2 | 7 | 26 | 1135 | 429 | 18,4 | 14,7 |
| 1 mm PE | 2 | 5 | 26,5 | 1071 | 342 | 18,5 | 16,7 |
| higher energy triggering Marx | | | | | | | |
| 1 mm PE | 2 | 14 | 30 | 908 | 856 | 21 | 13,6 |
| 1 mm PE | 2 | 7 | 30 | 906 | 857 | 21,5 | 13,7 |
| 1 mm PE | 2 | 7 | 30 | 918 | 849 | 22 | 13,9 |
| 1mm PE | 3 | | 30 | 990 | 838 | 26,3 | 15,4 |

The maximum of B is strongly influenced by the number of channels below $1 \mathrm{ch} / 10 \mathrm{~cm}$

Future work

Larger B-fields can be reached by decreasing inductance and increasing charge storage at constant voltage.
The 4-caps banks is a typical element for a compact parallel mounting.

QUESTIONS
Synchronization of the surface switches
Adding currents

ANSWERS
Multi gap multi channel sw.
Low inductance convolute
\checkmark the medium voltage operation of a large surface switch is reliable for generating $800-900 \mathrm{kA}$ with 500 ns risetime
\checkmark the STC design is a rather optimized solution for nondestructive applications
$\checkmark 26 \mathrm{~T}$ are obtained in a $10-\mathrm{mm}$ bore with a non fully optimized bank (footprint $2 s q . m$) at moderate charging voltage (30 kV).
\checkmark the 50 T objective is not reached so far
\checkmark as increasing Vch is not compatible with atmospheric air operation, larger B could be reached mainly by 2 ways :

- adding currents is possible with 2-4 banks providing a sufficient synchronization is achieved
- the design the convolute section where currents converge on the STC is a key issue.

