AN INDUSTRY SCALE CORONA-PLASMA FOR FLUE GAS DESO2/DENOX TECHNIQUE BY HIGH FREQUENCY AC+DC POWER SUPPLY WITH A SEMI-WET FLOW

Streamer plasma:

P.P. M. Blom, PhD Thesis, TU/e, 1997

Key-problem----ns pulse source

Dr. E.M. van veldhuizen, TU/e, 2000

Industrial use research

group	power	Switch device	Pulse width	status
ENEL Italy	10 kW	Thyratron (300 pps)	≈ 1000 ns	Discontinued
FLS miljo Denmark	8 kW	rotary spark gap	≈2500 ns	discontinued
Masuda research Japan	10 kW	rotary spark gap	≈ 1000 ns	commercial
Toshiba Japan	50 kW	magnetic compression (1000 pps)	≈ 500 ns	commercial
Electro-Techn Inst Korea	120 kW	magnetic compression	≈ 200 ns	developments
Inha Univ. Korea	20 kW	thyratron and pulse transformer (1500 pps)	≈ 200 ns	developments
China engineering	100 kW	thyratron and magnetic	≈ 500 ns	demonstration

DC+AC couple mode

(a): C-COUPLE

(b): Transformer-couple

Fig. 5. Dependence of NO concentration on the type of power supply with a eight nozzles electrode under the following conditions: $V_{PP}=2.6~\rm kV, f=60~\rm kHz; V_{PP}=3.8~\rm kV, f=40~\rm kHz; V_{PP}=7.2~\rm kV, f=20~\rm kHz; V_{PP}=10~\rm kV, f=10~\rm kHz; [NO]=86~\rm ppm, [NO_x]=90~\rm ppm, [CO_2]=2.7\%, [O_2]=14.8\%, [H_2O]=1.0\%, [N_2]=81.5\%, Q_x=1.1~\rm L/min, Q_t=4.0~\rm L/min.$

Theory of DE SO2

1) gas--liquid-reaction

$$SO_2+(NH_4)_2SO_3+H_2O \Rightarrow 2NH_4HSO_3$$

$$NH_3+NH_4HSO_3 \Rightarrow (NH_4)_2SO_3$$

2) reaction with plasma

$$O_2$$
, $H_2O \Rightarrow O$, OH , H

$$SO_2 \Rightarrow SO_3$$

$$SO_3+2NH_3+H_2O \Rightarrow (NH_4)_2SO_4$$

$$S(IV) \Rightarrow S(VI)$$

Small scale system in Peking University

semi-wet flow

semi-wet flow monitor

Large scale system in BJTU

$(NH_4)_2SO_4$

The experiments were carried out on the coronaplasma flue gas DeSO₂/DeNO_X system with a capacity of 12,000 Nm³/h under the following conditions:

gas temperature at the reactor entrance of 135°C, gas temperature at the reactor exit of 90°C, the power supply's parameters is 40 kVpp/48kHz AC voltage and 40kV DC voltage.

The experiments of DeSO₂ and DeNO_x were implemented simultaneously, 98% of SO₂ and 44% of NO_x are removed with an energy consumption of 1.8Wh/Nm³ and the final products are qualified fertilizer.