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Abstract
To check the design and manufacture process of the HTS current leads (68 kA) for the toroidal

field ITER magnets (TF) before the series production, several tests on TF prototypes were

performed in Hefei (at ASIPP center) in nominal operating condition [1].

In the present study, the data obtained from such measurements are analysed and compared to
the ITER specified performance targets. The experimental values are compared to the 3D FE

model predictions.
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1. TEST SUMMARY
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Figure 1 Overview of the measurements performed in July 2015 in Hefei. (Courtesy of P. Bauer
[2]). Data set: Cernox in middle of U-bend= MAG-HTS-CLU:MTO011-T; Full current= MAG-HTS-CL-

MI-001:IT; Ubend joint temp= MAG-FDR-STT:Ebloxx2-1

In Figure 1 an overview of the full set of measurements performed in Hefei in 2015 is shown.

Two TF prototypes were tested during the month of July and in this note we will refer to them
as CL1 and CL2.
In this analysis, for each test, the time has been normalized and all the parameters (temperature,
voltage and pressure drop, mass flow rate) are plotted as a function of time expressed in minutes
or seconds.
In Figure 2 the relevant cryogenic scheme and instrumental diagrams are reported. Further
details can be found in the Report “ASIPP Test Procedure for the ITER Current Leads

Prototypes” [1].
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Figure 2 Relevant cryogenic scheme and instrumental diagrams [1].
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2. LOFA (CASE 4.1)

In this section the main results on the LOFA tests are presented and discussed. As reported in
Figure 1, these tests were performed on the 5™ and on the 6' of July 2015 for CL2 and CL1

respectively. The technical details of the data acquisition are reported in [1].

2.1 Voltage drop over HEX
In Figure 3 the Voltage drops over HEX for both the current leads are shown.
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Figure 3 Voltage drop over HEX for CL1 (red and black curved) and CL2 (green and blue curves).

In Figure 4 and Figure 5 the voltage drops over HEX are plotted together with the current and

the mass flow rate for both the current leads under study. The maximum value of the voltage
drop over HEX reached during the transition regime is 123.09 mV for CL1 and 120.35 mV for
CL2.
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2.2 Current
In Figure 6 the current in steady state for both leads is shown. Results from two tests are

reported.
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Figure 6 Current for CL1 in pink and for CL2 in black. Data set: MAG-HTS-CL-MI-001:IT

2.3 HTS warm and cold end Temperatures
In Figure 7 and in Figure 8 the HTS cold and warm end temperatures for the two CLs are

plotted as a function of time.

As shown in_Figure 7 the HTS cold end temperature is in the range between 4.7 K and 5 K
while in Figure 8 it was found that the HTS warm end temperature has the lowest value ~65 K

and the highest value ~99 K. These values are in agreement with the TF requirement.
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Figure 7 HTS cold end temperature for CL1 in black and for CL2 in red. Data set: MAG-HTS-

CS:MTO010-TT for CL1 and MAG-HTS-CS:MTO010-TT for CL2
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2.4 Minimum LOFA time
As shown in Figure 9, the minimum LOFA time for CL1 is 484 s from the time when the mass

flow goes to zero (light blue curve in Figure 9) to the end when the voltage across the HTS
reaches 0.3 mV. The ITER specifics form requests 400 s (see Table 1).
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Figure 9 Minimum LOFA time for CL1. Data set: V-drop HTS=MAG-HTS-CL1-ME-005:ET; 300K flow-
rate=MAG-HTS-CL1-MF-001:FT and 95%temperature sensor=MAG-HTS-CL1-MT-007:TT.

Unfortunately, the minimum LOFA time for CL2 cannot be determined taking into account the
voltage drop over HTS (ME004B and MEQOS traces) due to missing data, see Figure 10. Thus
the signal MEOO4A corresponding to the voltage drop over the shunt was used and it follows
from Figure 11 that the minimum LOFA time for CL2 is 447 s.
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As reported in Table 1, the experimental minimum LOFA time for both current leads is
higher than ITER requirement (400 s).

Table 1 Comparison between the minimum LOFA time experimental results (as obtained from the
analysis at ASIPP [3] and at CERN) and the ITER requirement

Parameter ITER Requirement CL1 CL2
ASIPP | CERN | ASIPP | CERN
Minimum LOFA time (s) | 400 457 484 490 447

2.5 Minimum HTS overheating time constant
The minimum overheating time, i.e. the time from start of quench detection at 3 mV to the time

when the current is switched off'is 16 s for CL1 and 10 s for CL2.

As shown in Figure 12 and Figure 13, to obtain the OHT, the original voltage data (black

curves) were shifted in time (blue curves) because the two systems for the acquisition of the

voltages (QDS system) and of the temperatures and currents (CODAC system) are not

synchronized during the measurements.

In Table 2 such values are compared with the ITER specifics: the OHT for CL2is S s
lower than the expected value (15 s).
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Figure 12 Minimum overheating time for CL1.
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Figure 13 Minimum overheating time for CL2.

Table 2 Comparison between the minimum Overheating time experimental results and the ITER

requirement.
Parameter ITER Requirement CL1 | CL2
CERN
Minimum overheating 15 16 10
time (s)*

*the hot spot temperature is the maximum temperature recorded, i.e. 100 K. From the data, 200K

was never reached.
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3. STEADY STATE (CASE 4.1)

In this section the main results on the steady state tests are presented and discussed. As reported
in Figure 1, these tests were performed on the 13™ of July 2015 for both the leads (CL1 and
CL2) and the technical details of the data acquisition are reported in ref. [1].

The main goal of this section is to check if the parameters as the mass flow rate, the pressure
and voltage drop are, according to prediction, sufficiently stable to be considered in the steady

state regime.

3.1Mass flow rate in HEX section
In Figure 14 the measurements of the mass flow rate of the HEX are shown for both the leads.
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Figure 14 Mass flow rate in the HEX for CL1 (black curve) and CL2 (red curve). Data set:
MAG-HTS-CL2-MF-001:FT for CL2 and MAG-HTS-CL1-MF-001:FT for CL1.
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To check the stability of such data the error bars have been added in the flat region (i.e. starting

at the 80" minute), Figure 15. The error bar comes from the precision of the flow meters (+/-

0.05 g/s) as communicated by the team in Hefei.

Looking at Table 3 it is possible to conclude that the results obtained in this test analysis

are in very good agreement to those obtained from the 2D and 3D full model [4].
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Figure 15 Steady state region for the mass flow rate in the HEX for both the CLs. Accuracy

of +/-1%FS (FS=5 g/s).

Table 3 Mass flow rate in HEX: comparison between experimental, 3D FE full model [4] and
specification values.

3D Full 10 CL1 (CERN) CL2 (CERN)
model Specification Experimental Experimental
Mass flow
rate in 4.5 <4.8 4.65 4.65
HEX (g/s)

3.2Pressure drop in 50 K GHe circuit in HEX
In Figure 16 the measurements of pressure drop at room temperature (300 K) and in nominal

cryogenic conditions (50 K) are plotted for both the CLs. The steady state region, as in the
previous case (i.e. for the mass flow rate in Figure 14), has been reached after 80 minute the

start of the current ramp.
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Subtracting to the 50 K inlet supply pressure (around 4.5 bar) the 300 K exit pressure (around

3.5 bar), it was found that in the steady state regime the pressure drops in the 50 K circuit in

HEX are 0.11 and 0.12 MPa for CL1 and CL2 respectively, see Figure 17.

Comparing these values with those predicted by the 3D FE model [4], see Table 4, it is possible

to conclude that the experimental values fully match the simulated values as well as the

ITER specification.
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Figure 16 Pressure measurements at 300K and 50K for both the CLs. Data set: MAG-HTS-
CL1:MP0OO01-PT & MAG-HTS-CL1:MP002-PT = for CL1; MAG-HTS-CL2:MP001-PT & MAG-HTS-
CL2:MP002-PT = for CL2.
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Figure 17 Pressure drop in HEX for CL1 (black curve) and CL2 (violet curve).

Table 4 Maximum pressure drop in 50K circuit in HEX: comparison between experimental, 3D FE full

model [4] and specification values.

3DFull 10 CL1 (CERN)  CL2 (CERN)
model Specification Experimental Experimental
Max pressure
drop in 50K 0.12 <0.2 0.11 0.12
circuit in HEX
[MPa]
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3.3Voltage drop over HEX
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Figure 18 Voltage drops for CL1. Data set: MAG-HTS-CL1:MEOO2A-ET & MAG-HTS-CL1:MEOO02B-ET.
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Figure 19 Voltage drop in CL2. Data set: MAG-HTS-CL2:MEOO2A-ET & MAG-HTS-CL2:MEOO2B-ET.
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In Figure 18 and Figure 19 the voltage drops over HEX for CL1 and CL2 are reported. In the

same plots the nominal current is shown.

Two voltage taps were used for each current leads (MEO02A and ME002B) and it was found
that in the steady state regime the voltage drops are 77.75 and 73.37 mV for CL1 and CL2

respectively.
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4. UNDER/OVER CURRENT (CASES 6.1, 6.2, 6.3, 6.4, 6.5)

In this section the main results on the under/over current tests are presented and discussed. As
reported in Figure 1 and summarized in Table 5 these tests were performed on the 9™ and on

the 11" of July 2015 for both the leads (CL1 and CL2) and the technical details of the data

acquisition are reported in ref. [1].

Table 5 Summary of the under/over current tests

CASE CURRENT [kA] DATE

6.1 75 11.07.2015 Over current
6.2 64 09.07.2015 Under current
6.3 60 09.07.2015 Under current
6.4 55 09.07.2015 Under current
6.5 50 11.07.2015 Under current

4.1Voltage drop over HEX
In Figure 20 and Figure 21 the voltage drops over HEX for CL1 and CL2 are reported.

As expected in the over current case (case 6.1, 75 kA, see Table 5) the voltage drop is higher
than for the under current cases (i.e. below 68 kA: from 6.2 to 6.5 cases, see Table 5). By the
way, as shown hereafter, it should be noticed that the 75 kA case never reached steady state
due to the ~5g/s flow limitation in the flow controller. It follows that the reliability of the over
current values is lower with respect to those of the under current cases as well as of the steady

state.

For the case 6.3 (60 kA) for both the lead: at ~7000 s the voltage drop goes to zero. From the
data it appears that LOFA tests were performed as shown in Figure 22 and Figure 23 for CL1

and CL2 respectively.
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Figure 20 Voltage drops over HEX for CL1 at different currents. It should be noticed that HEX
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Figure 21 Voltage drops over HEX of CL2 for different currents. It should be noticed that HEX

didn’t reached steady state condition when operated at 75 KA.




Figure 22 Comparison between Voltage drop and mass flow rate for the over current case at

60KA.

Figure 23 Comparison between Voltage drop and mass flow rate for the over current case at

60KA.
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4.2 Mass flow rate in HEX
In Figure 24 and Figure 25 the mass flow rate in HEX for CL1 and CL2 are plotted respectively.

The instrumental error on the mass flow is 0.05 g/s.
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Figure 24 Mass flow rates as a function of time in HEX of CL1 for different currents. The mass flow
rate for the 75 kA is lower than 5g/s due to the limitation in the flow-controller.
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Figure 25 Mass flow rates as a function of time in HEX of CL2 for different currents. The mass flow
rate for the 75 kA is lower than 5g/s due to the limitation in the flow-controller.
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In Figure 26 and Figure 27 the magnifications up to 6000 s are reported to investigate the mass

flow rate value in the stable region: as expected, taking as reference the nominal value of 68 kA
with a mass flow rate of 4.6+/-0.5 g/s, it was found that in the under current cases (from 6.2 to
6.5, see Table 5) the mass flow rate is lower while in the over current case (i.e. case 6.1) the

mass flow rate is higher with respect to that one at 68 kA.

Such trend is shown in Figure 28 where the mass flow rate for both the leads is plotted as a

function of current and a very good agreement between the two data sets has been found.
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Figure 26 Mass flow rate in HEX of CL1 in the stable region at different currents.
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Figure 27 Mass flow rate in HEX of CL2 in the stable region at different currents.
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Figure 28 Mass flow rate (mfr) as a function of current for CL1 (black curve) and CL2 (red curve).
The 75 kA value is signed with the green circle because it did not reach steady state conditions.
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As shown in Figure 29, where the ratio between the mass flow rate and the current (mfi/I) is

plotted as a function of the current (in the range from 45 kA to 80 kA), the current of the HEX
is well optimized for both the CLs.
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Figure 29 Mass flow rate/| as a function of the current. The 75 kA value is signed with the green
circle because it did not reach steady state conditions.
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4.3Pressure drop in 50K GHe circuit in HEX
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Figure 30 Pressure drops in 50 K GHe circuit in HEX for CL1 at different currents.
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Figure 31 Pressure drops in 50 K GHe circuit in HEX for CL2 at different currents.
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In Figure 30 and in Figure 31 the pressure drops in 50 K GHe circuit in HEX for both the leads

at different currents are shown. They were obtained as explained in Subsection 3.2.
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Due to the instability during the measurements some magnification in the range between 3000

and 6000 s (where the values seem to be more stable) has been done, see Figure 32 and Figure

33.
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Figure 32 Pressure drops in HEX at different currents for CL1 in the stable region.
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Figure 33 Pressure drops in HEX at different currents for CL2 in the stable region.
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In such a way the dependence of the pressure drops as a function of current can be obtained

and in Figure 34 it is shown that the pressure drop is higher for higher current, i.e. higher

flows, confirming the expected trend.
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Figure 34 Pressure drop in 50 K GHe circuit in HEX as a function of the current for CL1 (black
curve) and CL2 (red curve).

The pressure drop as a function of the mass flow rate and of the current is shown in Figure 35.
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Figure 35 Pressure drop in 50 K GHe circuit in HEX as a function of the mass flow rate for CL1 (in
black) and for CL2 (in red).

4 4HTS warm end temperature
In Figure 36 and Figure 37 the HTS warm end temperature for both the leads are reported and

the values in steady state are in good agreement with the ITER requirement (65 K).
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Figure 36 HTS temperature warm end for CL1.
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4.5LOFA time for under/over current
From Figure 38 to Figure 49 the minimum LOFA time is calculated for each case and for both

the CLs. In Figure 50 the minimum LOFA time as a function of the current is shown: as
expected for higher current the LOFA time decreases from 891 s at 50 kA to 129 s at 75 kA.
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Figure 38 Minimum LOFA time for CL1 at 50 kA. Due to the lack of MEQO5 data set (V-drop over
HTS) the MEO04B data set (V-drop over shunt) have been used.
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Figure 39 The minimum LOFA time for CL2 at 50 kA cannot be determined due to the fact that the
mass flow rate curve is not complete. N.B. the temperature sensor MT007 (95% temperature

sensor) doesn’t work properly.
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Figure 40 Minimum LOFA time for CL1 at 55 kA. The value obtained (2152s) seems to be too high
probably due to the fact that the mass flow rate curve is not complete.

32



—. ; . e ——. 72
60 i
N
G il 470
7 50 i |
g 4 II —— 95% temperature sensor_CL2 55kA .
‘E o 2 300 K flow-rate_CL2_S5kA m
- 40 I B V-drop over shuntMEOG4B_CL2_55kA| | - 68
— i ! Full Current_55kA i
£ = Py
= 304 o =
= | vt p min LOFA time=2187 -1 66
E Fde e
_ . ! | || oy | ]
- 20 [ [ e ) v |
<l ! |I R { \\f‘\fﬂ\-"‘” \ufp\\i
| Lol i By, - 64
v X |
10 - L \,f (4427, 4.7563)
[ W/ e T
] (6614, 0.0033)
0 - i - 62
— '

T T T T T | T | T I T T |
-1000 0 1000 2000 3000 4000 5000 6000 Y0OO
time sec
Figure 41 The minimum LOFA time for CL2 at 55 kA of 2187 s is too long and seems to be unreal

probably due to the fact that the mass flow rate curve is not complete. N.B. the temperature
sensor MTO07 doesn’t work properly.
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Figure 42 Minimum LOFA time for CL1 at 60 kA. Due to the lack of MEOO5 data set (V-drop over

HTS) the MEOO4B data set (V-drop over shunt) have been used to determine the minimum LOFA
time.
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Figure 43 Minimum LOFA time for CL2 at 60 kA. Due to the lack of MEOOS5 data set (V-drop over

HTS) the MEOO04B data set (V-drop over shunt) have been used to determine the minimum LOFA
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Figure 44 Minimum LOFA time for CL1 at 64 kA. Due to the lack of MEOO5 data set (V-drop over
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Figure 46 The minimum LOFA time for CL1 at 75 kA could be not very precise because,
unfortunately, the mass flow rate curve is not complete due to the limitation imposed by the flow-
controller. N.B. the temperature sensor MTO07 doesn’t work properly.
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Figure 47 The minimum LOFA time for CL2 at 75 kA could be not very precise because,

unfortunately, the mass flow rate curve is not complete. N.B. the temperature sensor MT007
doesn’t work properly.
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Figure 49 Minimum LOFA time for CL2 at nominal condition (68 kA).
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Figure 50 Minimum LOFA time as a function of the current for both the current leads (CL1 in black
and CL2 in red).

4.6 Current
In Figure 51 the all currents in the different under/over current cases for CL1 and CL2 are
represented.
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Figure 51 Current for the under/over current cases.
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4.7 Summary under/over current analysis
In Figure 52 the voltage drops at different currents is plotted as a function of the mass flow rate

for both the CLs.

As expected, for currents below the nominal value (i.e. 68 kA) the mass flow rate is lower than
the 4.65 g/s found in Section 3.1 while for currents above the nominal value the mass flow rate

is higher.

N.B. The values of the voltage drops and of the mass flow rates are taken at the same time for

e = V-drop over HEX CL1 0 |
@ V-drop over HEX CL2 KA

each case.

>
E g0 68KA i
>
<]

| 50kA " ]
® ]
40 — 71 r r ' 1 r 1r 1 rr7rn 1T 717
32 34 36 38 40 42 44 46 48 50
mass flow rate [g/s]

Figure 52 Voltage drop over HEX as a function of mass flow rate and current. The 75 kA value is

signed with the green circle because it did not reach steady state conditions.

In Figure 53 the voltage drops over HEX as function of the current is shown.
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Figure 53 Voltage drop over HEX as a function of the current for both the current leads (for CL1 in
red and CL2 in black).

4 STAND BY (CASES 2.2 and 3.2)

In this section the main results on the stand by tests are presented and discussed. As reported
in Figure 1 these tests were performed on the 5™ and on the 9™ of July 2015 for CL2 and CL1

respectively and the technical details of the data acquisition are reported in ref. [1].

4.1 Current
In Figure 54 the full current as a function of time in the stand by regime for both the leads is

shown.

As shown in Figure 55, the small fluctuation of the full current in the stand-by mode (about +/-

0.15 kA) can be considered negligible if compared with that one in the steady state regime.
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Figure 54 Full current in the stand by regime for CL1 (in black) and for CL2 (in red).
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Figure 55 Comparison full current in stand by and in the steady state regime.
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4.2 Mass flow rate
In Figure 56 the measurements of the mass flow rate over HEX in stand by regime for both the

leads are shown.

Some instability issues occurred during the mass flow rate measurement in CL2 and thus it was
not possible to estimate its value; on the other hand it was found for CL1 that in stand by mode
the mass flow rate decreases by a factor 3.43 g/s with respect to the value found in the

steady state regime (i.c. the mass flow rate in stand by state is 1.22 g/s).

1.40 1 ' 'm 300K flow-rate_CL1:MF-001:FT_standby/| J
1.38 - @ 300 K flow-rate_CL2:MF-001:FT_standby
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1.28 -
1.26 -
1.24 1
1.22 -
1204 §¥
1.18 - )
1.16 - ]

7R E—
0 1000

(5393, 1.2227)

mass flow rate[g/s]

Ll L] L) Ll L)

| I I
3000 4000 5000 6000
time[s]

Figure 56 Mass flow rate in HEX for CL1 (black curve) and CL2 (red curve) in stand by regime (case
3.2).
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4.3 Pressure drops over HEX
In Figure 57 the measurements of pressure drop at room temperature (300 K) and at 50 K are

shown for both the CLs. Also in this case the result on CL2 seems to reflect instability during

the data acquisition.

To obtain the pressure drop over CL1 HEX in stand-by mode the 50 K supply pressure was
subtracted to the 300 K exit pressure and the result is shown in Figure 58.

Comparing the pressure drops over CL1 HEX in stand by and steady state mode, see Figure
59, a difference of 0.11 MPa has been found, that means, in steady state regime the

pressure drop over HEX is about two times that in stand-by.

50 K supply pressure_CL1:MP001-PT
300 K exit pressure_CL1:MP002-PT

4.7 50 K loop supply pressure_CL2:MP001-PT -
% 300 K exit pressure_CL2:MP002-PT

on

Pressure[bar]

(5269, 4.0365)
4.1 - (5288, 3.9844) -

o] TR

3.9 T
0 1000

T T T
3000 4000 5000 6000
time[s]
Figure 57 Inlet and exit pressure measurements at 300 K and 50 K in stand-by mode for both the
Cls.
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Figure 58 Pressure drop in 50 K circuit in HEX for CL1 in stand-by mode.
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Figure 59 Comparison of pressure drops in 50 K circuit in CL1 HEX for the stand by and steady
state regimes.



4.4 HTS warm end temperature
As shown in Figure 60 in stand by regime the HTS warm end for both the leads is 80 K, i.e.

15.1 K higher than the same temperature measured during the steady state tests.

1 ! I ! T N 1 T T T T T I " I
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Figure 60 Comparison of HTS warm temperature in both the CLs between the stand by and the
steady state regime.

5 OVER COOLING (CASES 5.10, 5.11)

In this section the main results on the over cooling tests are presented and discussed. As
reported in Figure 1 these tests were performed on the 11" of July 2015 for both the leads (CL1
and CL2) and the technical details of the data acquisition are reported in ref. [1].

In Table 6 the main characteristics of this two overcooling cases (5.10 and 5.11) are reported.

Table 6 Main characteristics of the overcooling tests.

CASE HEX inlet T(K) HTStop T (K) HEX inlet 5K inlet 5Kinlet T (K)
pressure pressure
(bara) (bara)
5.10 45 60 4 >3 <5
5.11 45 65 4 >3 <5
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5.1 Pressure drop in 50K GHe circuit in HEX
In Figure 61 the measurements of pressure at 300 K and 50 K are plotted for both the leads in

the two overcooling cases under study.

As shown in Figure 62, subtracting to the 50 K pressure the 300 K pressure, the pressure drops

in the 50 K circuit in HEX have been found to be lower than the ITER requirements (see Table

4 for comparison).
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Figure 61 Pressure measurements for both the leads in the two overcooling cases (5.10 and 5.11).
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Figure 62 Pressure drops in 50K circuit in HEX for both the overcooling cases and for both the
leads.

5.2 HTS warm end temperature and mass flow rate in HEX
The HTS warm end and the mass flow rate in the HEX for both the leads are shown in Figure

63 for the case 5.10 and in Figure 64 for the case 5.11.
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Figure 63 HTS warm end and mass flow rate for both the leads in the case 5.10. Magnification of
the stable region on the bottom.
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Figure 64 HTS warm end and mass flow rate for both the leads in the case 5.11. Magnification of
the stable region on the bottom.

5.3 Voltage drop over HEX only case 5.11

To compare the effect of the overcooling on the voltage drop as well as on the mass flow rate
the case 5.11 has been studied (unfortunately no data of voltage drop are available for the case

5.10).
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Taking into account at the same time the voltage drop and the mass flow rate values from

Figure 65 and Figure 66 then the voltage drops as a function of the mass flow rate for the case

5.11 is compared to the nominal value as shown in_Figure 67.
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Figure 65 Voltage drop for the case 5.11.
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Figure 66 Mass flow rate for the case 5.11.
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6 TEMPERATURE PROFILE

In this section the comparison between the simulated temperature profile and the measurements

on TF prototype will be reported.

The 3D FE thermo-hydraulic and electrical model described in reference [4] has been used to
get the temperature profile for the TF CLs. In such model the terminal is not included and it

will be introduced in the next 3D FE model.

6.1 Experimental data
In Figure 68 the position of the temperature sensors mounted on TF CLs during the test

procedure in Hefei (ASIPP) is shown.

In Figure 69 the broken sensors are reported on the PID and in Table 7 the list of CERNOX
sensors with issues as presented by P. Bauer during the weekly meeting on 4™ of November

2015 [5] is shown.

MTO8 MTOS
MTO1 PT MTO4 CERNOX CERNOX STTebloxx 2
CERNOX

HTS stack, total length: 50 (contact) +
310 +70 (contact)

Figure 68 Position of the temperature sensors on the TF prototype [2].
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Figure 69 PID: the broken CERNOX sensors are marked with red cross [2].

Table 7 List of CERNOX sensors with issues [2].

MAG-HTS-CL1:MTOO8B-TT
MAG-HTS-CL1:MTO0SB-TT
MAG-HTS-CS:MTO10B-TT
MAG-HTS-CL1:MTOO06B-TT
MAG-HTS-CL1:MTOO8-TT
MAG-HTS-CL1:MTO0S-TT
MAG-HTS-CL2:MTO08B-TT
MAG-HTS-CL2:MTO09B-TT
MAG-HTS-CLU:MTO011-TT

CL1
CL1
CL1
CL1
CL1
CL1
cL2
cL2
U-bend

Temp sensor middle of shunt

Temp sensor bottom of shunt

5K exit temperature

Temperature HTS warm end
Temperature sensor middle of shunt
Temperature sensor bottom of shunt
Temp sensor middle of shunt

Temp sensor bottom of shunt

Temp sensor U-bend

bypass for e-bloxx
bypass for e-bloxx
bypass for e-bloxx

use channel B instead (ebloxx problem)
use channel B instead (ebloxx problem)
bypass for e-bloxx
bypass for e-bloxx

unexpected current effects, mostly not usable
unexpected current effects, mostly not usable

only exploitable after July 11th, use MTO10-TT instead
broken

not working after July5th cool-down,

not working after July5th cool-down,

unexpected current effects, mostly not usable
unexpected current effects, mostly not usable

Not working most of the time

From Figure 70 to Figure 73 the results for the sensors MT006, MT004, MT009B and MT003

are reported. The temperature values marked in each graph will be used in section 1.3 to

perform the comparison with the simulated temperature profile.

It should be noticed that although in Table 7 it was stressed that the sensor MT009B could have

some issue due to unexpected current effects, such sensor is used in the present study because

it shows reasonable values (see later on the good agreement with the simulated temperature

profile, see Figure 75).
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Figure 70 MTO006: temperature at the HTS warm end.
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Figure 71 MTO004: temperature at the top of shunt.
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Figure 72 MTO09B: temperature at the bottom of shunt.
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Figure 73 MT003: temperature at the beginning of terminal block (HEX side)

N.B. All these temperature data are extracted from the steady state test (Case 4.1).

56



6.2 3D FE thermo-hydraulic and electrical model
The 3D FE thermo-hydraulic and electrical modelling performed on a complete 68 kA ITER

HTS current lead is described in details in ref. [4].
In Figure 74 the position of the CERNOX sensors on the 3D model are shown and in

Table 8 their main characteristics are summarized.

o

MT003

The inter = SOK

mHe inlet

Teu bottom = 5K

Figure 74 Position of the temperature sensors on the 3D model of TF HTS CL. The simulation does
not take into account the terminals (in blue).

Table 8 CERNOX sensors selected for the comparison with the numerical result

Sensor Position [m] Time [min] Tcu[K] Te2[K]

MTO006 -0.05 95.2 64.9615 64.9615
Temperature HTS warm end

MT004 0 95.17 64.7345 64.8102
Temperature sensor top of
shunt

MTO09B -0.5 95.18 5.395 5.3979
Temperature sensor bottom
of shunt

MTO003 1.1 95.2 299.55 294.85
Temperature sensor start of
terminal block (HX side)
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6.3 Comparison between experimental and simulated data
The temperature profile along the TF HTS current lead at nominal current (68kA) has been

obtained from the 3D thermo-hydraulic and electrical model in which the RRR of Cu was fixed
at 185 and the He mass flow rate at 4.5g/s.

As shown in Figure 75 the experimental values acquired with the 4 temperature sensors

(see Table 8) are in perfect agreement with the calculated temperature profile.
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] 1 r | ! MT003
300 ~[Hl- 3D model
@ Temperature HTS warm end_CL1 F
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Figure 75 Comparison between the theoretical (from the 3D model) and experimental temperature

profile for the TF HTS prototypes.

The MTO003 sensor corresponding to that mounted on the terminal has to be checked with the
temperature profile obtained from the new 3D model that will include the terminal. We can
already conclude that the detected terminal temperature already follows the trend of the

temperature profile shown in Figure 75.

58



7 JOINT RESISTANCES (CASE 10.1)

In this section the joint resistances are extrapolated from a linear fit of the V-I curves.

The positions of the voltage taps mounted on the prototype during the joint resistance

measurements are shown in Figure 76 while the linear fits are presented from Figure 77 to

Figure 84.
MEOT
LTS wires
Term MEO1 HX MEO2 Twin Box Joint MEOS

I I

*e e
L
L3

ME-5 HTS only over length - \

of steel section —310 mm —~ \
MED1 includes also 1 m of o P
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THTS

ISOMETRIC VIEW

Figure 76 Voltage tap (Quench detection). Courtesy of P. Bauer [5].
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Figure 77 V-I characteristic to obtain the resistance on the upper half of the shunt, i.e. Resx cu-HTS

(MEO003), for CL2.
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Figure 82 V-I characteristic to obtain the resistance over LTS linker and twi box joint, i.e. RTwin
Box (L1s-LTs) (ME008), for CL2.
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Figure 83 V-I characteristic to obtain the resistance over flexible and terminal for CL1.
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Figure 84 V-I characteristic to obtain the resistance over flexible and terminal for CL2.
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The hysteretic like behaviour that occur in Figure 77, Figure 78 and Figure 83 are expected due

or to the different clocks used to perform the current and voltage measurement (QDS and

CODAC system, see slide #9 in ref. [2] for further details on the two systems) or to the

inductive voltage. To investigate on such behaviour the comparison between the current and

voltage data as a function of time has been performed and the results are shown below (from

Figure 85 to Figure 108).

A. Upper half of the shunt (ME003) for CL1: Resk cu-HTS
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Figure 85 V(t) and I(t) curves for the upper half of the shunt as a function of time for CL1.
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before shifting the time of the two data sets (i.e. V(t) and I(t)).
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Figure 87 Magnification of the V(t) and I(t) curves for the upper half of the shunt of CL1 to estimate
the time shift between CODAC and QDS acquisition systems (6 s).

MAG-HTS-CL1-ME-003:ET Value (mV)

W V-drop shunt upper half CL1

o

(&

S
L

- Linear Fit of V-grop shunt upper half F'MAG-HTS-CL1-ME-003:ET Valug"

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

= | Exuatian

o [Pearson's 0.80815

J [MEDOZET  sinpe 000503

y=a+bu
Wiaight Mo Weg hiting
egcual Sum - 0.84252

aof Squares

Adj. R-Bquare 09085

Walug Elandard Enor
MAG-HTS-CL: Infercept  -0.03712 A2ETETE-D
11003448
Valus

R=5.03nQ2

— T T T T 1
0 10 20 30 40 50

MAG-HTS-CL-MI-001:IT Value (kA)

Figure 88 V-I characteristic curve to obtain the resistance on the upper half of the shunt for CL1

after shifting the time of the two data sets (i.e. V(t) and I(t)).
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The difference between the resistance values found before and after the shift in time is only

0.01 nQ.
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B. Upper half of the shunt (ME003) for CL2: Resk cu-HTS
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Figure 89 V(t) and I(t) curves for the upper half of the shunt as a function of time for CL2.
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Figure 90 V-I characteristic curve to obtain the resistance on the upper half of the shunt for CL2
before shifting the time of the two data sets (i.e. V(t) and I(t)).
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Figure 91 Magnification of the V(t) and I(t) curves for the upper half of the shunt of CL2 to
estimate the time shift between CODAC and QDS acquisition systems (6 s).
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Figure 92 V-| characteristic curve to obtain the resistance on the upper half of the shunt for CL2
after shifting the time of the two data sets (i.e. V(t) and I(t)).

The difference between the resistance values found before and after the shift in time is only

0.01 nQ.
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C. Shunt bottom half for CL1 and CL2 (ME006): Ruts-LTS
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Figure 93 V(t) and I(t) curves for the bottom half of the shunt as a function of time for CL1.
Unfortunately, in this case, the shift in time cannot be determined due to the fluctuation in the V(t)

curve.
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Figure 94 V-| characteristic to obtain the resistance on the bottom half of the shunt for CL1.
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Figure 95 V(t) and I(t) curves for the bottom half of the shunt as a function of time for CL2.

Unfortunately, in this case, the shift in time cannot be determined due to the fluctuation in the V(t)
curve.
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Figure 96 V-| characteristic to obtain the resistance on the bottom half of the shunt for CL2.
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To obtain more precise values for these resistances it is necessary to repeat the V measurements

on both the current leads.

D. LTS linker and twin box joint for CL1 and CL2 (ME008):
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Figure 97 V(t) and I(t) curves for the LTS linker and twin box joint as a function of time for CL1.
Unfortunately, in this case, the shift in time cannot be determined due to the fluctuation in the V(t)
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Figure 98 V-| characteristic to obtain the resistance over LTS linker and twin box joint for CL1.
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Figure 99 V(t) and I(t) curves for the LTS linker and twin box joint as a function of time for CL2.
Unfortunately, in this case, the shift in time cannot be determined due to the fluctuation in the V(t)

curve.
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To obtain more precise values for these resistances it is necessary to repeat the V measurements

on both the current leads.

E. Flexible and terminal for CL1 (ME001): RFLEXIBLE- Cu TERMINAL
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Figure 101 V(t) and I(t) curves for the flexible and terminal as a function of time for CL1.
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Figure 102 V-I characteristic to obtain the resistance over flexible and terminal for CL1 before
shifting the time of the two data sets (i.e. V(t) and I(t)).
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Figure 104 V-I characteristic curve to obtain the resistance on the resistance and flexible for CL1
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after shifting the time of the two data sets (i.e. V(t) and I(t)).
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The difference between the resistance values found before and after the shift in time is only

2.74 nQ.

F. Flexible and terminal for CL2 (ME001): RFLEXIBLE- Cu TERMINAL
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Figure 105 V(t) and I(t) curves for the flexible and terminal as a function of time for CL2.
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Figure 107 Magnification of the V(t) and I(t) curves for the flexible and resistance of CL2 to estimate
the time shift between CODAC and QDS acquisition systems (25 s).

W V-drop over flexible and terminal
9 Linear Fit of \-drop over flexible and termina E"MAG-HTS-CL2:MEOD1-ET Value"
= -
p— ZBE2FE.TSIM -
Q s e
2 ser .—l/ 7
4 Vaki Standard Ermar -
> olemas = o= o
h = [ METOI-ET vaue = L1 e _
LLI ] #
1
o 404 J i
8 ]
= 301 -
ﬂ .
3 20- ] R=1158.78nQ i
B 4
E 10- — i
QI) ] ~
g 0 wa .
-10 I T T — T I T T T — T
0 10 20 30 40 50 60

MAG-HTS-CL-MI-001:IT Value (kA)

70

Figure 108 V-I characteristic curve to obtain the resistance on the resistance and flexible for CL2
after shifting the time of the two data sets (i.e. V(t) and I(t)).
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The difference between the resistance values found before and after the shift in time is only

3.31 nQ.

The V-I characteristic curves (Figure 106 and Figure 108) present several discontinuities due

to the missing V(t) data (as shown in Figure 107).

Table 9 Comparison between the joint resistance experimental results (as obtained from the analysis
at ASIPP [3] and at CERN) and the ITER requirement.

Parameter [nQ] ITER CL1 CL2
requirement ASIPP CERN ASIPP CERN

Resk cu-HTs 10 5.14 5.02 before 5.25 5.11before

MEO003 5.03 after 5.12 after

Ruts-Lts 1 0.14 0.13 0.44 0.3754

MEOQ06

Rrwin BoX (LTs-LTS) 2 0.37 0.44 0.26 0.414

MEO008

RFLEXIBLE-Cu TERMINAL 100 170 1217.75 before 170 1155.47

MEO001 1220.49 after

From such analysis it is possible to conclude that the “hysteretic” like shape of the V-I curves
is due to the time shift (about 6 s) between the V data (acquired with the QDS system) and I
data (acquired with the CODAC system).

In Table 9 the comparison between the experimental values and the ITER requirements are
reported and there is a very good agreement for the resistances Resk cu-nts (ME003), Rurs-Lts
(MEO006) and RtwiN Box (L1s-LTs) (MEOO8) while some issues were found for the terminal to

flexible contact resistance (MEO0O1).

Indeed the MEOO1 PV includes the terminal (Rt), the contact from the terminal to the flexible
(R1-r), the flexible (RF) and the contact from the flexible to Al bus-bus (Rr-al bus bar) and all

these four resistances have to be considered in series, i.e.:
Rtor= RT+RT1.F+ REF+ RF Al bUS bar

From the model it is possible to estimate the flexible resistance (Rr) as follows: the total cross-
section of the Cu flexible(s) is 61440 mm? and the length is about 1 m thus Rr= 273 nQ.

Unfortunately no other information can be found for Rt, Rt.-r and Rg-a1bus var thus, as discussed
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in the weekly meeting of the 18" of November 2015, further tests are planned for next January

2016. The solution to measure the flexible to RT terminal contact resistance that was proposed

consists to add 8 additional V-taps as shown in Figure 109.

Al

/ V-tap

flex

Cu

view from the back view from the side

Figure 109 Proposition to measure the flexible to RT terminal contact resistance (Courtesy of P.
Bauer)

SUMMARY

In this note the test measurements performed in Hefei on TF prototype CLs are analysed and

discussed in details.
The main results can be summarized as follows:

1. LOFA tests (Case 4.1): the experimental minimum LOFA time for CL1 and CL2 are

well behind the ITER requirements;

2. Steady state test (Case 4.1): both the experimental values for the mass flow rate and

the pressure drop fully satisfy the simulated values as well as the ITER requirements;
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3. Under/Over current tests (Cases from 6.1 to 6.5): as expected, the mass flow rate and

the pressure and voltage drop over 50 K GHe circuit in HEX increase with the current;

4. Stand by (Case 3.2): the pressure drops in HEX in stand by mode are about two times

lower than for the steady state; also the mass flow rate is lower than the nominal value,
i.e. 1.22 instead than 4.65 g/s. Some instabilities during the CL1 measurements have
been found;

5. Over cooling (Cases 5.10 and 5.11): the voltage drop over HEX for case 5.11 (45 K

HEX inlet tempertaure) are higher at lower mass flow rate than in the steady state
regime (50 K HEX inlet temperature); no voltage drop data available for case 5.10;
6. Temperature profile: the experimental values acquired with 4 temperature sensors

(MT006, MT004, MT009B, MT003) are in good agreement with the temperature

profile obtained by means of 3D FE thermo-hydraulic and electrical model.

7. Joint resistances: very good agreement for the resistances Resk cu-nts (ME003), Rurs-

Lts (ME006) and Rrwiv Box (Lts-LTs) (MEOO8) while some issues have been found for

the terminal to flexible contact resistance (MEO0O1).
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